Skip to content

Commit

Permalink
Merge pull request #134 from loli/Release_0.5.2
Browse files Browse the repository at this point in the history
Release 0.5.2
  • Loading branch information
loli authored Jul 23, 2024
2 parents 91d31a7 + 258a533 commit 3fbdf6c
Show file tree
Hide file tree
Showing 9 changed files with 100 additions and 22 deletions.
1 change: 1 addition & 0 deletions CHANGES.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
v0.5.2, 2024-07-23 -- Hotfixes
v0.5.1, 2024-04-03 -- Hotfixes
v0.5.0, 2024-04-03 -- Addressed all depreciation warnings and incompatabilities
Updated documentation
Expand Down
2 changes: 1 addition & 1 deletion doc/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
# The short X.Y version.
version = "0.5"
# The full version, including alpha/beta/rc tags.
release = "0.5.1"
release = "0.5.2"

# Automatically created autosummary entries (thus no need to call sphinx-autogen)
autosummary_generate = True
Expand Down
2 changes: 1 addition & 1 deletion medpy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,4 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

__version__ = "0.5.1"
__version__ = "0.5.2"
8 changes: 4 additions & 4 deletions medpy/features/intensity.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,7 @@ def indices(image, voxelspacing=None, mask=slice(None)):
image = image[0]

if not type(mask) is slice:
mask = numpy.array(mask, copy=False, dtype=numpy.bool_)
numpy.asarray(mask).astype(bool)

if voxelspacing is None:
voxelspacing = [1.0] * image.ndim
Expand Down Expand Up @@ -865,7 +865,7 @@ def _extract_centerdistance(image, mask=slice(None), voxelspacing=None):
"""
Internal, single-image version of `centerdistance`.
"""
image = numpy.array(image, copy=False)
image = numpy.asarray(image)

if None == voxelspacing:
voxelspacing = [1.0] * image.ndim
Expand All @@ -889,7 +889,7 @@ def _extract_intensities(image, mask=slice(None)):
"""
if type(mask) is list and type(mask[0]) is slice:
mask = tuple(mask)
return numpy.array(image, copy=True)[mask].ravel()
return numpy.asarray(image)[mask].ravel()


def _substract_hemispheres(
Expand Down Expand Up @@ -941,7 +941,7 @@ def _extract_feature(fun, image, mask=slice(None), **kwargs):
Additional keyword arguments to be passed to the feature extraction function
"""
if not type(mask) is slice:
mask = numpy.array(mask, copy=False, dtype=numpy.bool_)
numpy.asarray(mask).astype(bool)

if type(image) is tuple or type(image) is list:
return join(*[fun(i, mask, **kwargs) for i in image])
Expand Down
6 changes: 3 additions & 3 deletions medpy/features/texture.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def coarseness(image, voxelspacing=None, mask=slice(None)):
# set default mask or apply given mask
if not type(mask) is slice:
if not type(mask[0] is slice):
mask = numpy.array(mask, copy=False, dtype=numpy.bool_)
mask = numpy.asarray(mask).astype(bool)
image = image[mask]

# set default voxel spacing if not suppliec
Expand Down Expand Up @@ -170,7 +170,7 @@ def contrast(image, mask=slice(None)):
# set default mask or apply given mask
if not type(mask) is slice:
if not type(mask[0] is slice):
mask = numpy.array(mask, copy=False, dtype=numpy.bool_)
mask = numpy.asarray(mask).astype(bool)
else:
mask = tuple(mask)
image = image[mask]
Expand Down Expand Up @@ -238,7 +238,7 @@ def directionality(
# set default mask or apply given mask
if not type(mask) is slice:
if not type(mask[0] is slice):
mask = numpy.array(mask, copy=False, dtype=numpy.bool_)
mask = numpy.asarray(mask).astype(bool)
image = image[mask]

# set default voxel spacing if not suppliec
Expand Down
8 changes: 4 additions & 4 deletions medpy/features/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def normalize(vector, cutoffp=(0, 100), model=False):
The learned normalization model.
"""
vector = numpy.array(vector, dtype=float)
vector = numpy.asarray(vector).astype(float)

# add a singleton dimension if required
if 1 == vector.ndim:
Expand Down Expand Up @@ -121,7 +121,7 @@ def normalize_with_model(vector, model):
normalize : ndarray
The normalized versions of the input vectors.
"""
vector = numpy.array(vector, dtype=float)
vector = numpy.asarray(vector).astype(float)

# unpack model
minp, maxp, minv, maxv = model
Expand Down Expand Up @@ -213,9 +213,9 @@ def join(*vectors):
# process supplied arguments
vectors = list(vectors)
for i in range(len(vectors)):
vectors[i] = numpy.array(vectors[i], copy=False)
vectors[i] = numpy.asarray(vectors[i])
if vectors[i].ndim == 1:
vectors[i] = numpy.array([vectors[i]], copy=False).T
vectors[i] = numpy.asarray([vectors[i]]).T

# treat single-value cases special (no squeezing)
if 1 == len(vectors[0]):
Expand Down
16 changes: 8 additions & 8 deletions medpy/metric/binary.py
Original file line number Diff line number Diff line change
Expand Up @@ -467,12 +467,12 @@ def assd(result, reference, voxelspacing=None, connectivity=1):
and then averaging the two lists. The binary images can therefore be supplied in any order.
"""
assd = numpy.mean(
(
assd = numpy.concatenate(
[
__surface_distances(result, reference, voxelspacing, connectivity),
__surface_distances(reference, result, voxelspacing, connectivity),
)
)
]
).mean()
return assd


Expand Down Expand Up @@ -802,12 +802,12 @@ def obj_assd(result, reference, voxelspacing=None, connectivity=1):
and then averaging the two lists. The binary images can therefore be supplied in any order.
"""
assd = numpy.mean(
(
assd = numpy.concatenate(
[
__obj_surface_distances(result, reference, voxelspacing, connectivity),
__obj_surface_distances(reference, result, voxelspacing, connectivity),
)
)
]
).mean()
return assd


Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ def run_setup(with_compilation):

setup(
name="MedPy",
version="0.5.1", # major.minor.micro
version="0.5.2", # major.minor.micro
description="Medical image processing in Python",
author="Oskar Maier",
author_email="[email protected]",
Expand Down
77 changes: 77 additions & 0 deletions tests/metric_/binary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
"""
Unittest for medpy.features.histogram.
@author Oskar Maier
@version r0.1.0
@since 2024-07-23
@status Release
"""

import numpy as np

from medpy.metric import asd, assd, obj_asd, obj_assd

result_min = np.asarray([1, 0]).astype(bool)
reference_min = np.asarray([0, 1]).astype(bool)
result_sym = np.asarray(
[[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]]
).astype(bool)
reference_sym = np.asarray(
[[1, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]]
).astype(bool)


def test_asd_identity():
assert asd(result_min, result_min) == 0


def test_assd_identity():
assert assd(result_min, result_min) == 0


def test_obj_asd_identity():
assert obj_asd(result_min, result_min) == 0


def test_obj_assd_identity():
assert obj_assd(result_min, result_min) == 0


def test_asd_distance():
assert asd(result_min, reference_min) == 1.0


def test_assd_distance():
assert assd(result_min, reference_min) == 1.0


def test_asd_voxelspacing():
assert asd(result_min, reference_min, voxelspacing=[2]) == 2.0


def test_assd_voxelspacing():
assert assd(result_min, reference_min, voxelspacing=[2]) == 2.0


def test_asd_is_not_symetric():
asd_1 = asd(result_sym, reference_sym)
asd_2 = asd(reference_sym, result_sym)
assert asd_1 != asd_2


def test_assd_is_symetric():
assd_1 = assd(result_sym, reference_sym)
assd_2 = assd(reference_sym, result_sym)
assert assd_1 == assd_2


def test_obj_asd_is_not_symetric():
asd_1 = obj_asd(result_sym, reference_sym)
asd_2 = obj_asd(reference_sym, result_sym)
assert asd_1 != asd_2


def test_obj_assd_is_symetric():
assd_1 = obj_assd(result_sym, reference_sym)
assd_2 = obj_assd(reference_sym, result_sym)
assert assd_1 == assd_2

0 comments on commit 3fbdf6c

Please sign in to comment.