Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(ai): create custom device map for FLUX pipeline #298

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions runner/app/pipelines/device_maps/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .flux import LPFluxPipeline
91 changes: 91 additions & 0 deletions runner/app/pipelines/device_maps/flux.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import inspect
import logging
import os
import time
from typing import List, Optional, Tuple

import PIL
import torch
from diffusers import FluxPipeline
from diffusers.pipelines import ImagePipelineOutput

from app.pipelines.base import Pipeline

logger = logging.getLogger(__name__)

class LPFluxPipeline(Pipeline):
class_vars = ['ldm', 'ldm2', 'lp_device_map']
def __init__(self, model_id: str, device_map: str, torch_device: any, **kwargs):
self.lp_device_map = device_map
self.ldm = None
self.ldm2 = None
if self.lp_device_map == "FLUX_DEVICE_MAP_2_GPU":
#setup transformer for GPU 0
self.ldm = FluxPipeline.from_pretrained(model_id, text_encoder=None, text_encoder_2=None, tokenizer=None, tokenizer_2=None, vae=None, **kwargs).to("cuda:0")
#setup pipeline for all other components on GPU 1
self.ldm2 = FluxPipeline.from_pretrained(model_id, unet=None, transformer=None, **kwargs).to("cuda:1")
else:
self.ldm = FluxPipeline.from_pretrained(model_id, **kwargs).to(torch_device)

def __getattr__(self, name):
# Redirect attribute access to self.ldm if it exists there
try:
if name not in self.class_vars:
return getattr(self.ldm, name)
else:
return super().__getattr__(name)

except AttributeError:
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

def __setattr__(self, name, value):
# Handle setting attributes
if name not in self.class_vars:
# Redirect to ldm if attribute doesn't exist in this instance
setattr(self.ldm, name, value)
else:
super().__setattr__(name, value)

def __call__(
self, prompt: str, **kwargs
) -> Tuple[List[PIL.Image], List[Optional[bool]]]:
outputs = None
if self.lp_device_map == "FLUX_DEVICE_MAP_2_GPU":
with torch.no_grad():
#generate prompt embeddings on GPU 1
start = time.time()
prompt_embeds = pooled_prompt_embeds = text_ids = None
encode_prompt_kwargs = inspect.signature(self.ldm2.encode_prompt).parameters.keys()
prompt_2 = kwargs.pop("prompt_2", "")
prompt_embeds, pooled_prompt_embeds, text_ids = self.ldm2.encode_prompt(prompt, prompt_2, **{k: v for k, v in kwargs.items() if k in encode_prompt_kwargs})
logger.info(f"encode_prompt took: {time.time()-start} seconds")
#generate the image with transformer, return latents
start = time.time()
prompt_embeds = prompt_embeds.to(self.ldm._execution_device)
pooled_prompt_embeds = pooled_prompt_embeds.to(self.ldm._execution_device)
logger.info(f"prompt embeds conversion took: {time.time()-start} seconds")
start= time.time()
ldm_kwargs = inspect.signature(self.ldm.__call__).parameters.keys()
latents = self.ldm(prompt=None, prompt_2=None,
prompt_embeds=prompt_embeds.to(self.ldm._execution_device),
pooled_prompt_embeds=pooled_prompt_embeds.to(self.ldm._execution_device),
output_type="latent", return_dict=False,
**{k: v for k, v in kwargs.items() if k in ldm_kwargs})
logger.info(f"transformer took: {time.time()-start} seconds")
#use the VAE on GPU 1 to process the image
#copied from diffusers/pipelines/flux/pipeline_flux.py L760
start = time.time()
latents = latents[0].to(self.ldm2._execution_device)
logger.info(f"latents conversion took: {time.time()-start} seconds")
start = time.time()
latents = self.ldm2._unpack_latents(latents, kwargs["height"], kwargs["width"], self.ldm2.vae_scale_factor)
latents = (latents / self.ldm2.vae.config.scaling_factor) + self.ldm2.vae.config.shift_factor
image = self.ldm2.vae.decode(latents, return_dict=False)[0]
image = self.ldm2.image_processor.postprocess(image) #only support default output_type="pil"
logger.info(f"vae decode took: {time.time()-start} seconds")

outputs = ImagePipelineOutput(images=image)
else:
outputs = self.ldm(prompt=prompt, **kwargs)

return outputs
8 changes: 6 additions & 2 deletions runner/app/pipelines/text_to_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@

import PIL
import torch

from diffusers import (
AutoPipelineForText2Image,
EulerDiscreteScheduler,
FluxPipeline,
StableDiffusion3Pipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
Expand All @@ -29,6 +29,10 @@
)
from app.utils.errors import InferenceError

from app.pipelines.device_maps import (
LPFluxPipeline,
)

logger = logging.getLogger(__name__)


Expand Down Expand Up @@ -137,7 +141,7 @@ def __init__(self, model_id: str):
):
# Decrease precision to preven OOM errors.
kwargs["torch_dtype"] = torch.bfloat16
self.ldm = FluxPipeline.from_pretrained(model_id, **kwargs).to(torch_device)
self.ldm = LPFluxPipeline(model_id, os.environ.get("DEVICE_MAP", ""), torch_device, **kwargs)
else:
self.ldm = AutoPipelineForText2Image.from_pretrained(model_id, **kwargs).to(
torch_device
Expand Down
Loading