Knowledge graphs (KGs) are widely used in natural language processing tasks, making error detection crucial to maintain quality and performance. Current methods, including rule-based and embedding-based approaches, struggle to generalize across different KGs or fully utilize subgraph information, leading to unsatisfactory false detection results. In this paper, we propose MAKGED, a novel framework for KG error detection that utilizes multiple large language models (LLMs) in a collaborative setting. Subgraph embeddings are generated using a graph convolutional network (GCN) and concatenated with LLM-generated query embeddings to ensure effective comparison of semantic and structural information. Four agents trained on different subgraph strategies analyze the triples and collaborate through multi-round discussions, improving both detection accuracy and transparency. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, improving the accuracy and robustness of KG evaluation.
![image](https://private-user-images.githubusercontent.com/44581509/367654242-ba8afcb0-a0f0-4622-8478-c0bd80884dc5.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzMTgxODcsIm5iZiI6MTczOTMxNzg4NywicGF0aCI6Ii80NDU4MTUwOS8zNjc2NTQyNDItYmE4YWZjYjAtYTBmMC00NjIyLTg0NzgtYzBiZDgwODg0ZGM1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTElMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjExVDIzNTEyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWNmNGM4MTJhYjI4OWQ4OGI4Y2Q1ZmMzMjhkZTc5ZDYwODU2ODY1NWI3NjhiMzU1NTI1MWExMzMyNDNlNjY2OTQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.ZA9M0RtY1TLiiE0t77d4G2NE0Wsse-CbLlqqNaiAryg)
![image](https://private-user-images.githubusercontent.com/44581509/367693673-2c290faa-aba0-48df-87e8-0b7984f6aa2b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzMTgxODcsIm5iZiI6MTczOTMxNzg4NywicGF0aCI6Ii80NDU4MTUwOS8zNjc2OTM2NzMtMmMyOTBmYWEtYWJhMC00OGRmLTg3ZTgtMGI3OTg0ZjZhYTJiLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTElMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjExVDIzNTEyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTFhNWMzMjAxZTE5NDY5NTYwNGUwNjFmY2EzNGI1YTBmY2NlZjc2ZGFiYzljMThhNjgxNDZiZjM5NDRlMjY3YWImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.IwGlFq3S3FXJtjMtPp39dLtNvS77FuXZzt4thNc_UM8)