Skip to content

krlberry/autocnet

This branch is 298 commits ahead of kree/autocnet:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Kelvin Rodriguez
Nov 14, 2016
2acbb12 · Nov 14, 2016
Dec 8, 2015
Nov 14, 2016
Apr 14, 2016
Sep 20, 2016
Sep 20, 2016
Nov 4, 2016
Oct 29, 2016
Apr 6, 2016
Feb 29, 2016
Sep 22, 2016
Mar 23, 2016
Jan 4, 2016
Nov 19, 2015
Nov 19, 2015
Nov 19, 2015
Oct 31, 2016
May 19, 2016
Apr 27, 2016
Mar 17, 2016
Jul 22, 2016
May 6, 2016
Nov 19, 2015
Jul 25, 2016

Repository files navigation

AutoCNet

Join the chat at https://gitter.im/USGS-Astrogeology/autocnet https://travis-ci.org/USGS-Astrogeology/autocnet.svg?branch=master https://coveralls.io/repos/USGS-Astrogeology/autocnet/badge.svg?branch=master&service=github Documentation Status 'Stories in Ready'

Automated sparse control network generation to support photogrammetric control of planetary image data.

Installation Instructions

We suggest using Anaconda Python to install Autocnet within a virtual environment. These steps will walk you through the process.

  1. [Download](https://www.continuum.io/downloads) and install the Python 3.x Miniconda installer. Respond Yes when prompted to add conda to your BASH profile.
  1. (Optional) We like to sequester applications in their own environments to avoid any dependency conflicts. To do this:
  • conda create -n <your_environment_name> python=3 && source activate <your_environment_name>
  1. Bring up a command line and add three channels to your conda config (~/condarc):
  • conda config --add channels conda-forge
  • conda condig --add channels jlaura
  • conda config --add channels menpo
  1. Finally, install autocnet: conda install -c jlaura autocnet-dev

About

Automatic control network generation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 91.3%
  • Python 8.6%
  • Other 0.1%