Skip to content

Tries to reframe relational data in terms of functions over finite domain.

License

Notifications You must be signed in to change notification settings

josephmckinsey/FiniteFunctions.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FiniteFunctions.jl

Tries to reframe relational data in terms of functions over finite domain.

Desired Operations

  1. $f = g \circ h$.

  2. $g(x) = f(x, y)$ (this could just be a combination of $i(x) = (x, y)$ which can be seen as combing a morphism $j(1) = y$ and then using the isomorphim $x \leftrightarrow (x, 1)$.

  3. $g(y) = f^{-1}(y)$

  4. $g(x) = f(x, -)$ (function valued)

  5. $g(x) = \sum_y f(x, y) = \mathbb{E}(f(x, y) | ((x, y) \mapsto x))$.

  6. $f(x, y) = g(x) \times g(y)$

  7. $dup(x) = (x, x)$.

  8. $g(a) = \mathbb{E}(f(b) | \phi)$ where $\phi(b) = a$. So what we really care about is this sort of labelled $\sigma$-algebra $\phi^{-1}$.

  9. $h(i, k) = \mathbb{E}_j(\mathrm{prod} \circ (f \times g) \circ \mathrm{match}_{j=k}^{-1}(i, j, k, true))$ (matrix multiplication of $f(i, j)$ and $g(k, l)$ ) and $\mathrm{match}((i, j), (k, l)) = (i, j, l, j==k)$

  10. $2^X \Leftrightarrow S \hookrightarrow X$.

About

Tries to reframe relational data in terms of functions over finite domain.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages