-
Notifications
You must be signed in to change notification settings - Fork 93
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 86caf86
Showing
74 changed files
with
11,999 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# ViLBERT <img src="fig/vilbert_trim.png" width="45"> | ||
|
||
Code and pre-trained models for **ViLBERT: Pretraining Task-Agnostic VisiolinguisticRepresentations for Vision-and-Language Tasks**. | ||
|
||
|
||
## Repository Setup | ||
|
||
1. Create a fresh conda environment, and install all dependencies. | ||
|
||
```text | ||
conda create -n vilbert python=3.6 | ||
conda activate vilbert | ||
git clone https://github.com/jiasenlu/ViLBert | ||
cd ViLBert | ||
pip install -r requirements.txt | ||
``` | ||
|
||
2. Install pytorch | ||
``` | ||
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch | ||
``` | ||
|
||
3. Install apx, follows https://github.com/NVIDIA/apex | ||
|
||
4. Install this codebase as a package in this environment. | ||
```text | ||
python setup.py develop | ||
``` | ||
|
||
## Data Setup | ||
|
||
Check `README.md` under `data` for more details. | ||
|
||
## Visiolinguistic Pre-training | ||
|
||
To train the model: | ||
|
||
``` | ||
To be added | ||
``` | ||
|
||
For internal use: copy the pre-trained checkpoint from Skynet | ||
|
||
``` | ||
cp -a /srv/share3/jlu347/vilbert/save/* #to_your_directory. | ||
``` | ||
|
||
## Benchmark Vision-Lanugage Tasks | ||
|
||
| Task | Sub-Task | Model | LR | Results (split) | | ||
| :-----------------------: | :---------------: | :---------: | :--: | :-----------------------------------------------------: | | ||
| **VQA** | - | **ViLBERT** | 4e-5 | **70.55** (test-dev) | | ||
| - | - | DFAF | - | 70.22 (test-dev) | | ||
| **VCR** | Q->A | **ViLBERT** | 2e-5 | **73.3** (test) | | ||
| - | Q->A | R2C | - | 63.8 (test) | | ||
| **VCR** | QA->R | **ViLBERT** | 2e-5 | **74.6** (test) | | ||
| - | QA->R | R2C | - | 67.3 (test) | | ||
| **VCR** | Q->AR | **ViLBERT** | 2e-5 | **54.8** (test) | | ||
| - | Q->AR | R2C | - | 44.0 (test) | | ||
| **Ref Expression** | RefCOCO+ | **ViLBERT** | 4e-5 | **72.34** (val) - **78.52** (testA) - **62.61** (testB) | | ||
| - | RefCOCO+ | MAttNet | - | 65.33 (val) - 71.62 (testA) - 56.02 (testB) | | ||
| **Ref Expression** | RefCOCO | **ViLBERT** | 4e-5 | - | | ||
| - | RefCOCO | MAttNet | - | - | | ||
| **Ref Expression** | Refg | **ViLBERT** | 4e-5 | - | | ||
| - | Refg | MAttNet | - | - | | ||
| **Image Caption Ranking** | Image Retrieval | **ViLBERT** | 2e-5 | **58.20** (R1) - **84.90** (R5) - **91.52** (R10) | | ||
| - | Image Retrieval | SCAN | - | 48.60 (R1) - 77.70 (R5) - 85.20 (R10) | | ||
| **Image Caption Ranking** | Caption Retrieval | **ViLBERT** | 2e-5 | - | | ||
| - | Caption Retrieval | SCAN | - | - | | ||
|
||
|
||
## TASKS | ||
### VQA | ||
|
||
To fintune a 6-layer vilbert model for VQA with 8 GPU. `--tasks 1` means VQA tasks. Check `vlbert_tasks.yml` for more settings for VQA tasks. | ||
|
||
```bash | ||
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin --config_file config/bert_base_6layer_6conect.json --learning_rate 4e-5 --num_workers 16 --tasks 1 --save_name pretrained | ||
``` | ||
|
||
### VCR | ||
|
||
Similarly, to finetune a 6-layer vilbert model for VCR task, run the following commands. Here we joint train `Q->A ` and `QA->R` tasks, so the tasks is specified as `--tasks 6-7` | ||
|
||
``` | ||
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin --config_file config/bert_base_6layer_6conect.json --learning_rate 2e-5 --num_workers 16 --tasks 6-7 --save_name pretrained | ||
``` | ||
|
||
### Refer Expression | ||
``` | ||
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin --config_file config/bert_base_6layer_6conect.json --learning_rate 4e-5 --num_workers 16 --tasks 11 --save_name pretrained | ||
``` | ||
|
||
### Image Retrieval | ||
``` | ||
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin --config_file config/bert_base_6layer_6conect.json --learning_rate 4e-5 --num_workers 9 --tasks 11 --save_name pretrained | ||
``` | ||
|
||
### Add your own tasks | ||
``` | ||
``` | ||
## Why does ViLBERT look like <img src="fig/vilbert_trim.png" width="45">? | ||
|
||
<p align="center"> | ||
<img src="fig/vilbert.png" width="400" > | ||
</p> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
["embeddings.word_embeddings.weight", "embeddings.position_embeddings.weight", "embeddings.token_type_embeddings.weight", "embeddings.LayerNorm.weight", "embeddings.LayerNorm.bias", "encoder.layer.0.attention.self.query.weight", "encoder.layer.0.attention.self.query.bias", "encoder.layer.0.attention.self.key.weight", "encoder.layer.0.attention.self.key.bias", "encoder.layer.0.attention.self.value.weight", "encoder.layer.0.attention.self.value.bias", "encoder.layer.0.attention.output.dense.weight", "encoder.layer.0.attention.output.dense.bias", "encoder.layer.0.attention.output.LayerNorm.weight", "encoder.layer.0.attention.output.LayerNorm.bias", "encoder.layer.0.intermediate.dense.weight", "encoder.layer.0.intermediate.dense.bias", "encoder.layer.0.output.dense.weight", "encoder.layer.0.output.dense.bias", "encoder.layer.0.output.LayerNorm.weight", "encoder.layer.0.output.LayerNorm.bias", "encoder.layer.1.attention.self.query.weight", "encoder.layer.1.attention.self.query.bias", "encoder.layer.1.attention.self.key.weight", "encoder.layer.1.attention.self.key.bias", "encoder.layer.1.attention.self.value.weight", "encoder.layer.1.attention.self.value.bias", "encoder.layer.1.attention.output.dense.weight", "encoder.layer.1.attention.output.dense.bias", "encoder.layer.1.attention.output.LayerNorm.weight", "encoder.layer.1.attention.output.LayerNorm.bias", "encoder.layer.1.intermediate.dense.weight", "encoder.layer.1.intermediate.dense.bias", "encoder.layer.1.output.dense.weight", "encoder.layer.1.output.dense.bias", "encoder.layer.1.output.LayerNorm.weight", "encoder.layer.1.output.LayerNorm.bias", "encoder.layer.2.attention.self.query.weight", "encoder.layer.2.attention.self.query.bias", "encoder.layer.2.attention.self.key.weight", "encoder.layer.2.attention.self.key.bias", "encoder.layer.2.attention.self.value.weight", "encoder.layer.2.attention.self.value.bias", "encoder.layer.2.attention.output.dense.weight", "encoder.layer.2.attention.output.dense.bias", "encoder.layer.2.attention.output.LayerNorm.weight", "encoder.layer.2.attention.output.LayerNorm.bias", "encoder.layer.2.intermediate.dense.weight", "encoder.layer.2.intermediate.dense.bias", "encoder.layer.2.output.dense.weight", "encoder.layer.2.output.dense.bias", "encoder.layer.2.output.LayerNorm.weight", "encoder.layer.2.output.LayerNorm.bias", "encoder.layer.3.attention.self.query.weight", "encoder.layer.3.attention.self.query.bias", "encoder.layer.3.attention.self.key.weight", "encoder.layer.3.attention.self.key.bias", "encoder.layer.3.attention.self.value.weight", "encoder.layer.3.attention.self.value.bias", "encoder.layer.3.attention.output.dense.weight", "encoder.layer.3.attention.output.dense.bias", "encoder.layer.3.attention.output.LayerNorm.weight", "encoder.layer.3.attention.output.LayerNorm.bias", "encoder.layer.3.intermediate.dense.weight", "encoder.layer.3.intermediate.dense.bias", "encoder.layer.3.output.dense.weight", "encoder.layer.3.output.dense.bias", "encoder.layer.3.output.LayerNorm.weight", "encoder.layer.3.output.LayerNorm.bias", "encoder.layer.4.attention.self.query.weight", "encoder.layer.4.attention.self.query.bias", "encoder.layer.4.attention.self.key.weight", "encoder.layer.4.attention.self.key.bias", "encoder.layer.4.attention.self.value.weight", "encoder.layer.4.attention.self.value.bias", "encoder.layer.4.attention.output.dense.weight", "encoder.layer.4.attention.output.dense.bias", "encoder.layer.4.attention.output.LayerNorm.weight", "encoder.layer.4.attention.output.LayerNorm.bias", "encoder.layer.4.intermediate.dense.weight", "encoder.layer.4.intermediate.dense.bias", "encoder.layer.4.output.dense.weight", "encoder.layer.4.output.dense.bias", "encoder.layer.4.output.LayerNorm.weight", "encoder.layer.4.output.LayerNorm.bias", "encoder.layer.5.attention.self.query.weight", "encoder.layer.5.attention.self.query.bias", "encoder.layer.5.attention.self.key.weight", "encoder.layer.5.attention.self.key.bias", "encoder.layer.5.attention.self.value.weight", "encoder.layer.5.attention.self.value.bias", "encoder.layer.5.attention.output.dense.weight", "encoder.layer.5.attention.output.dense.bias", "encoder.layer.5.attention.output.LayerNorm.weight", "encoder.layer.5.attention.output.LayerNorm.bias", "encoder.layer.5.intermediate.dense.weight", "encoder.layer.5.intermediate.dense.bias", "encoder.layer.5.output.dense.weight", "encoder.layer.5.output.dense.bias", "encoder.layer.5.output.LayerNorm.weight", "encoder.layer.5.output.LayerNorm.bias", "encoder.layer.6.attention.self.query.weight", "encoder.layer.6.attention.self.query.bias", "encoder.layer.6.attention.self.key.weight", "encoder.layer.6.attention.self.key.bias", "encoder.layer.6.attention.self.value.weight", "encoder.layer.6.attention.self.value.bias", "encoder.layer.6.attention.output.dense.weight", "encoder.layer.6.attention.output.dense.bias", "encoder.layer.6.attention.output.LayerNorm.weight", "encoder.layer.6.attention.output.LayerNorm.bias", "encoder.layer.6.intermediate.dense.weight", "encoder.layer.6.intermediate.dense.bias", "encoder.layer.6.output.dense.weight", "encoder.layer.6.output.dense.bias", "encoder.layer.6.output.LayerNorm.weight", "encoder.layer.6.output.LayerNorm.bias", "encoder.layer.7.attention.self.query.weight", "encoder.layer.7.attention.self.query.bias", "encoder.layer.7.attention.self.key.weight", "encoder.layer.7.attention.self.key.bias", "encoder.layer.7.attention.self.value.weight", "encoder.layer.7.attention.self.value.bias", "encoder.layer.7.attention.output.dense.weight", "encoder.layer.7.attention.output.dense.bias", "encoder.layer.7.attention.output.LayerNorm.weight", "encoder.layer.7.attention.output.LayerNorm.bias", "encoder.layer.7.intermediate.dense.weight", "encoder.layer.7.intermediate.dense.bias", "encoder.layer.7.output.dense.weight", "encoder.layer.7.output.dense.bias", "encoder.layer.7.output.LayerNorm.weight", "encoder.layer.7.output.LayerNorm.bias", "encoder.layer.8.attention.self.query.weight", "encoder.layer.8.attention.self.query.bias", "encoder.layer.8.attention.self.key.weight", "encoder.layer.8.attention.self.key.bias", "encoder.layer.8.attention.self.value.weight", "encoder.layer.8.attention.self.value.bias", "encoder.layer.8.attention.output.dense.weight", "encoder.layer.8.attention.output.dense.bias", "encoder.layer.8.attention.output.LayerNorm.weight", "encoder.layer.8.attention.output.LayerNorm.bias", "encoder.layer.8.intermediate.dense.weight", "encoder.layer.8.intermediate.dense.bias", "encoder.layer.8.output.dense.weight", "encoder.layer.8.output.dense.bias", "encoder.layer.8.output.LayerNorm.weight", "encoder.layer.8.output.LayerNorm.bias", "encoder.layer.9.attention.self.query.weight", "encoder.layer.9.attention.self.query.bias", "encoder.layer.9.attention.self.key.weight", "encoder.layer.9.attention.self.key.bias", "encoder.layer.9.attention.self.value.weight", "encoder.layer.9.attention.self.value.bias", "encoder.layer.9.attention.output.dense.weight", "encoder.layer.9.attention.output.dense.bias", "encoder.layer.9.attention.output.LayerNorm.weight", "encoder.layer.9.attention.output.LayerNorm.bias", "encoder.layer.9.intermediate.dense.weight", "encoder.layer.9.intermediate.dense.bias", "encoder.layer.9.output.dense.weight", "encoder.layer.9.output.dense.bias", "encoder.layer.9.output.LayerNorm.weight", "encoder.layer.9.output.LayerNorm.bias", "encoder.layer.10.attention.self.query.weight", "encoder.layer.10.attention.self.query.bias", "encoder.layer.10.attention.self.key.weight", "encoder.layer.10.attention.self.key.bias", "encoder.layer.10.attention.self.value.weight", "encoder.layer.10.attention.self.value.bias", "encoder.layer.10.attention.output.dense.weight", "encoder.layer.10.attention.output.dense.bias", "encoder.layer.10.attention.output.LayerNorm.weight", "encoder.layer.10.attention.output.LayerNorm.bias", "encoder.layer.10.intermediate.dense.weight", "encoder.layer.10.intermediate.dense.bias", "encoder.layer.10.output.dense.weight", "encoder.layer.10.output.dense.bias", "encoder.layer.10.output.LayerNorm.weight", "encoder.layer.10.output.LayerNorm.bias", "encoder.layer.11.attention.self.query.weight", "encoder.layer.11.attention.self.query.bias", "encoder.layer.11.attention.self.key.weight", "encoder.layer.11.attention.self.key.bias", "encoder.layer.11.attention.self.value.weight", "encoder.layer.11.attention.self.value.bias", "encoder.layer.11.attention.output.dense.weight", "encoder.layer.11.attention.output.dense.bias", "encoder.layer.11.attention.output.LayerNorm.weight", "encoder.layer.11.attention.output.LayerNorm.bias", "encoder.layer.11.intermediate.dense.weight", "encoder.layer.11.intermediate.dense.bias", "encoder.layer.11.output.dense.weight", "encoder.layer.11.output.dense.bias", "encoder.layer.11.output.LayerNorm.weight", "encoder.layer.11.output.LayerNorm.bias"] |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size": 1024, | ||
"v_num_hidden_layers":2, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1], | ||
"t_biattention_id":[10, 11], | ||
"pooling_method": "mul" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size": 1024, | ||
"v_num_hidden_layers":4, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1, 2, 3], | ||
"t_biattention_id":[8, 9, 10, 11], | ||
"pooling_method": "mul" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size": 1024, | ||
"v_num_hidden_layers":6, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1, 2, 3, 4, 5], | ||
"t_biattention_id":[6, 7, 8, 9, 10, 11], | ||
"pooling_method": "mul" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size": 1024, | ||
"v_num_hidden_layers":8, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1, 2, 3, 4, 5, 6, 7], | ||
"t_biattention_id":[4, 5, 6, 7, 8, 9, 10, 11], | ||
"pooling_method": "mul" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 768, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 3072, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 12, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 1024, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 4096, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 16, | ||
"num_hidden_layers": 24, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size":1024, | ||
"v_num_hidden_layers":2, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1], | ||
"t_biattention_id":[22, 23], | ||
"pooling_method": "mul" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"attention_probs_dropout_prob": 0.1, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"hidden_size": 1024, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 4096, | ||
"max_position_embeddings": 512, | ||
"num_attention_heads": 16, | ||
"num_hidden_layers": 24, | ||
"type_vocab_size": 2, | ||
"vocab_size": 30522, | ||
"v_feature_size": 2048, | ||
"v_target_size": 1601, | ||
"v_hidden_size":1024, | ||
"v_num_hidden_layers":4, | ||
"v_num_attention_heads":8, | ||
"v_intermediate_size":1024, | ||
"bi_hidden_size":1024, | ||
"bi_num_attention_heads":8, | ||
"bi_intermediate_size": 1024, | ||
"bi_attention_type":1, | ||
"v_attention_probs_dropout_prob":0.1, | ||
"v_hidden_act":"gelu", | ||
"v_hidden_dropout_prob":0.1, | ||
"v_initializer_range":0.02, | ||
"v_biattention_id":[0, 1, 2, 3], | ||
"t_biattention_id":[20, 21, 22, 23], | ||
"pooling_method": "mul" | ||
} |
Oops, something went wrong.