This repository demonstrates how to use the IMPROVE library v0.1.0-alpha for building a drug response prediction (DRP) model using UNO, and provides examples with the benchmark cross-study analysis (CSA) dataset.
This version, tagged as v0.1.0-alpha
, introduces a new API which is designed to encourage broader adoption of IMPROVE and its curated models by the research community.
Installation instuctions are detailed below in Step-by-step instructions.
ML framework:
- TensorFlow -- deep learning framework for building the prediction model
IMPROVE dependencies:
Benchmark data for cross-study analysis (CSA) can be downloaded from this site.
The data tree is shown below:
csa_data/raw_data/
├── splits
│ ├── CCLE_all.txt
│ ├── CCLE_split_0_test.txt
│ ├── CCLE_split_0_train.txt
│ ├── CCLE_split_0_val.txt
│ ├── CCLE_split_1_test.txt
│ ├── CCLE_split_1_train.txt
│ ├── CCLE_split_1_val.txt
│ ├── ...
│ ├── GDSCv2_split_9_test.txt
│ ├── GDSCv2_split_9_train.txt
│ └── GDSCv2_split_9_val.txt
├── x_data
│ ├── cancer_copy_number.tsv
│ ├── cancer_discretized_copy_number.tsv
│ ├── cancer_DNA_methylation.tsv
│ ├── cancer_gene_expression.tsv
│ ├── cancer_miRNA_expression.tsv
│ ├── cancer_mutation_count.tsv
│ ├── cancer_mutation_long_format.tsv
│ ├── cancer_mutation.parquet
│ ├── cancer_RPPA.tsv
│ ├── drug_ecfp4_nbits512.tsv
│ ├── drug_info.tsv
│ ├── drug_mordred_descriptor.tsv
│ └── drug_SMILES.tsv
└── y_data
└── response.tsv
uno_preprocess_improve.py
- takes benchmark data files and transforms them into files for training and inferenceuno_train_improve.py
- trains the UNO modeluno_infer_improve.py
- runs inference with the trained UNO modeluno_default_model.txt
- default parameter file (parameter values specified in this file override the defaults)params.py
- definitions of parameters that are specific to the model
git clone https://github.com/JDACS4C-IMPROVE/UNO
cd UNO
git checkout develop
Create conda environment
conda create --name Uno_IMPROVE python=3.8 pip -y
conda activate Uno_IMPROVE
pip install protobuf==3.19.6
pip install tensorflow-gpu==2.10.0
pip install pyarrow==12.0.1
pip install pyyaml pandas scikit-learn
You can use setup_deps.sh
to help automate installing these dependencies.
source setup_improve.sh
This will:
- Download cross-study analysis (CSA) benchmark data into
./csa_data/
. - Clone IMPROVE repo (checkout
develop
) outside the UNO model repo. - Set
PYTHONPATH
(adds IMPROVE repo). - Set
IMPROVE_DATA_DIR
. - Note that you must run this to setup the path variables every time you log in. Installation is skipped if the directories already exist.
python uno_preprocess_improve.py --input_dir ./csa_data/raw_data --output_dir exp_result
Preprocesses the CSA data and creates train, validation (val), and test datasets.
Generates:
- nine model input data files (each has a file for train, val, and infer):
ge_*_data.parquet
,md_*_data.parquet
,rsp_*_data.parquet
- three tabular data files, each containing the drug response values (i.e. AUC) and corresponding metadata:
train_y_data.csv
,val_y_data.csv
,test_y_data.csv
exp_result
├── ge_test_data.parquet
├── ge_train_data.parquet
├── ge_val_data.parquet
├── md_test_data.parquet
├── md_train_data.parquet
├── md_val_data.parquet
├── param_log_file.txt
├── rsp_test_data.parquet
├── rsp_train_data.parquet
├── rsp_val_data.parquet
├── test_y_data.csv
├── train_y_data.csv
├── val_y_data.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz
python uno_train_improve.py --input_dir exp_result --output_dir exp_result
Trains UNO using the model input data: ge_train_data.parquet
, md_train_data.parquet
, rsp_train_data.parquet
(training) and ge_val_data.parquet
, md_val_data.parquet
, rsp_val_data.parquet
(for early stopping).
Generates:
- trained model:
saved_model.pb
- predictions on val data (tabular data):
val_y_data_predicted.csv
- prediction performance scores on val data:
val_scores.json
exp_result
├── ge_test_data.parquet
├── ge_train_data.parquet
├── ge_val_data.parquet
├── md_test_data.parquet
├── md_train_data.parquet
├── md_val_data.parquet
├── model
├── assets/
├── keras_metadata.pb
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
├── param_log_file.txt
├── rsp_test_data.parquet
├── rsp_train_data.parquet
├── rsp_val_data.parquet
├── test_y_data.csv
├── train_y_data.csv
├── val_scores.json
├── val_y_data.csv
├── val_y_data_predicted.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz
python uno_infer_improve.py --input_data_dir exp_result --input_model_dir exp_result --output_dir exp_result --calc_infer_score true
Evaluates the performance on a test dataset with the trained model.
Generates:
- predictions on test data (tabular data):
test_y_data_predicted.csv
- prediction performance scores on test data:
test_scores.json
exp_result
├── ge_test_data.parquet
├── ge_train_data.parquet
├── ge_val_data.parquet
├── md_test_data.parquet
├── md_train_data.parquet
├── md_val_data.parquet
├── model
├── assets/
├── keras_metadata.pb
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
├── param_log_file.txt
├── rsp_test_data.parquet
├── rsp_train_data.parquet
├── rsp_val_data.parquet
├── test_scores.json
├── test_y_data.csv
├── test_y_data_predicted.csv
├── train_y_data.csv
├── val_scores.json
├── val_y_data.csv
├── val_y_data_predicted.csv
├── x_data_gene_expression_scaler.gz
└── x_data_mordred_scaler.gz