Skip to content

Commit

Permalink
[#179] Add a library function for F-measure, also known as F1-score
Browse files Browse the repository at this point in the history
  • Loading branch information
riley-harper committed Dec 11, 2024
1 parent b93ab6f commit 8604767
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 1 deletion.
4 changes: 4 additions & 0 deletions hlink/linking/core/model_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,10 @@
import numpy as np


def f_measure(true_pos: int, false_pos: int, false_neg: int) -> float:
return 2 * true_pos / (2 * true_pos + false_pos + false_neg)


def mcc(tp: int, tn: int, fp: int, fn: int) -> float:
"""
Given the counts of true positives (tp), true negatives (tn), false
Expand Down
42 changes: 41 additions & 1 deletion hlink/tests/core/model_metrics_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,49 @@
from hypothesis import assume, given
import hypothesis.strategies as st

from hlink.linking.core.model_metrics import mcc, precision, recall
from hlink.linking.core.model_metrics import f_measure, mcc, precision, recall

NonNegativeInt = st.integers(min_value=0)
NegativeInt = st.integers(max_value=-1)


def test_f_measure_example() -> None:
true_pos = 3112
false_pos = 205
false_neg = 1134

f_measure_score = f_measure(true_pos, false_pos, false_neg)
assert (
abs(f_measure_score - 0.8229539) < 0.0001
), "expected F-measure to be near 0.8229539"


@given(true_pos=NonNegativeInt, false_pos=NonNegativeInt, false_neg=NonNegativeInt)
def test_f_measure_between_0_and_1(
true_pos: int, false_pos: int, false_neg: int
) -> None:
assume(true_pos + false_pos + false_neg > 0)
f_measure_score = f_measure(true_pos, false_pos, false_neg)
assert 0.0 <= f_measure_score <= 1.0


@given(true_pos=NonNegativeInt, false_pos=NonNegativeInt, false_neg=NonNegativeInt)
def test_f_measure_is_harmonic_mean_of_precision_and_recall(
true_pos: int, false_pos: int, false_neg: int
) -> None:
precision_score = precision(true_pos, false_pos)
recall_score = recall(true_pos, false_neg)

assume(precision_score + recall_score > 0)

f_measure_score = f_measure(true_pos, false_pos, false_neg)
harmonic_mean = (
2 * precision_score * recall_score / (precision_score + recall_score)
)

assert (
abs(harmonic_mean - f_measure_score) < 0.0001
), f"harmonic mean is {harmonic_mean}, but F-measure is {f_measure_score}"


def test_mcc_example() -> None:
Expand Down

0 comments on commit 8604767

Please sign in to comment.