Skip to content

Commit

Permalink
Fix tests with compile config
Browse files Browse the repository at this point in the history
  • Loading branch information
SarahByrneIntel committed Jul 18, 2024
1 parent c63c223 commit e652eaa
Show file tree
Hide file tree
Showing 6 changed files with 26 additions and 10 deletions.
10 changes: 7 additions & 3 deletions test/python/test_compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
#

from intel_npu_acceleration_library.compiler import compile
from intel_npu_acceleration_library.compiler import CompilerConfig
from intel_npu_acceleration_library.dtypes import int4
from sklearn.metrics import r2_score
import intel_npu_acceleration_library
Expand Down Expand Up @@ -39,7 +40,8 @@ def test_compilation(dtype):

y_ref = model(x).detach()

compiled_model = compile(model, dtype)
compiler_conf = CompilerConfig(dtype=dtype)
compiled_model = compile(model, compiler_conf)

assert compiled_model

Expand Down Expand Up @@ -104,7 +106,8 @@ def test_compile_training(dtype):

model = NN()

compiled_model = compile(model, dtype, training=True)
compiler_conf = CompilerConfig(dtype=dtype, training=True)
compiled_model = compile(model, compiler_conf)

for name, layer in compiled_model.named_children():
if dtype == torch.int8:
Expand All @@ -118,7 +121,8 @@ def test_compile_inference(dtype):

model = NN()

compiled_model = compile(model, dtype)
compiler_conf = CompilerConfig(dtype=dtype)
compiled_model = compile(model, compiler_conf)

for name, layer in compiled_model.named_children():
assert layer.training == False
4 changes: 3 additions & 1 deletion test/python/test_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@


import intel_npu_acceleration_library
from intel_npu_acceleration_library.compiler import CompilerConfig
from sklearn.metrics import r2_score
import pytest
import torch
Expand Down Expand Up @@ -71,7 +72,8 @@ def test_conv(
conv.conv.weight.data *= 128
y_ref = conv(X)

npu_conv = intel_npu_acceleration_library.compile(conv, dtype)
compiler_conf = CompilerConfig(dtype=dtype)
npu_conv = intel_npu_acceleration_library.compile(conv, compiler_conf)
y = npu_conv(X)

assert y.dtype == y_ref.dtype
Expand Down
3 changes: 2 additions & 1 deletion test/python/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,8 @@ def tokenizer():

@pytest.mark.parametrize("model_seq_length", [128, 256])
def test_warm_up(tokenizer, model, model_seq_length):
compiled_model = intel_npu_acceleration_library.compile(model)
compiler_conf = CompilerConfig()
compiled_model = intel_npu_acceleration_library.compile(model, compiler_conf)
intel_npu_acceleration_library.nn.llm.warm_up_decoder_model(
tokenizer, compiled_model, model_seq_length
)
Expand Down
4 changes: 3 additions & 1 deletion test/python/test_optimizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaMLP, LlamaModel
from transformers.models.gemma.modeling_gemma import GemmaConfig, GemmaMLP, GemmaModel
from intel_npu_acceleration_library.optimizations import horizontal_fusion_linear
from intel_npu_acceleration_library.compiler import CompilerConfig
from sklearn.metrics import r2_score
import torch.nn as nn
import intel_npu_acceleration_library
Expand Down Expand Up @@ -142,7 +143,8 @@ def test_model(model_name, hidden_size, intermediate_size, sequence_length, bias

reference = model(example_input)[0]

optimized = intel_npu_acceleration_library.compile(model, torch.float16)
compiler_conf = CompilerConfig(dtype=torch.float16)
optimized = intel_npu_acceleration_library.compile(model, compiler_conf)

output = optimized(example_input)[0]

Expand Down
5 changes: 4 additions & 1 deletion test/python/test_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
#

from sklearn.metrics import r2_score
from intel_npu_acceleration_library.compiler import CompilerConfig
import numpy as np
import intel_npu_acceleration_library
import pytest
Expand Down Expand Up @@ -88,7 +89,9 @@ def test_compiled_quantized(batch, inC, outC):

model = NN(inC, outC)
y_ref = model(X.to(torch.float32)).detach()
compiled_model = intel_npu_acceleration_library.compile(model, torch.int8)

compiler_conf = CompilerConfig(dtype=torch.int8)
compiled_model = intel_npu_acceleration_library.compile(model, compiler_conf)
assert compiled_model

y1 = compiled_model(X).detach()
Expand Down
10 changes: 7 additions & 3 deletions test/python/test_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

from sklearn.metrics import r2_score
from intel_npu_acceleration_library import compile
from intel_npu_acceleration_library.compiler import CompilerConfig
import torch
import pytest
import copy
Expand All @@ -28,12 +29,14 @@ def forward(self, x):

@pytest.fixture
def model_no_bias():
return compile(NN(inc=in_c, outc=out_c, bias=False))
compiler_conf = CompilerConfig()
return compile(NN(inc=in_c, outc=out_c, bias=False), compiler_conf)


@pytest.fixture
def model():
return compile(NN(inc=in_c, outc=out_c, bias=True))
compiler_conf = CompilerConfig()
return compile(NN(inc=in_c, outc=out_c, bias=True), compiler_conf)


def test_parameters(model, model_no_bias):
Expand All @@ -48,7 +51,8 @@ def test_gradient():
cpu_model.load_state_dict(copy.deepcopy(npu_model.state_dict()))

# Compile one of the model on npu
compile(npu_model, training=True)
compiler_conf = CompilerConfig(training=True)
compile(npu_model, compiler_conf)

x = torch.rand([batch, in_c]).half()
yref = torch.rand([batch, in_c]).half()
Expand Down

0 comments on commit e652eaa

Please sign in to comment.