Skip to content

Commit

Permalink
add release notes to 2.5.0 (#3360)
Browse files Browse the repository at this point in the history
  • Loading branch information
jingxu10 authored Nov 5, 2024
1 parent a7f9cef commit ecb3791
Show file tree
Hide file tree
Showing 47 changed files with 417 additions and 314 deletions.
2 changes: 1 addition & 1 deletion cpu/2.5.0+cpu/_sources/tutorials/examples.md.txt
Original file line number Diff line number Diff line change
Expand Up @@ -502,7 +502,7 @@ print("Execution finished")
import torch
from transformers import BertModel

model = BertModel.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased", attn_implementation="eager")
model.eval()

vocab_size = model.config.vocab_size
Expand Down
4 changes: 2 additions & 2 deletions cpu/2.5.0+cpu/_sources/tutorials/features/fast_bert.md.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Currently `ipex.fast_bert` API is only well optimized for training. For inferenc

### Prerequisite

- Transformers 4.6.0 ~ 4.43.2
- Transformers 4.6.0 ~ 4.45.0

### Usage Example

Expand All @@ -20,7 +20,7 @@ An API `ipex.fast_bert` is provided for a simple usage. Usage of this API follow
import torch
from transformers import BertModel

model = BertModel.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased", attn_implementation="eager")
model.eval()

vocab_size = model.config.vocab_size
Expand Down
5 changes: 2 additions & 3 deletions cpu/2.5.0+cpu/_sources/tutorials/getting_started.md.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Quick Start

The following instructions assume you have installed the Intel® Extension for PyTorch\*. For installation instructions, refer to [Installation](../../../index.html#installation?platform=cpu&version=main).
The following instructions assume you have installed the Intel® Extension for PyTorch\*. For installation instructions, refer to [Installation](../../../index.html#installation?platform=cpu&version=v2.5.0%2Bcpu).

To start using the Intel® Extension for PyTorch\* in your code, you need to make the following changes:

Expand Down Expand Up @@ -64,7 +64,6 @@ In [Cheat Sheet](./cheat_sheet.md), you can find more commands that can help you

`ipex.llm.optimize` is used for Large Language Models (LLM).


```python
import torch
#################### code changes ####################
Expand Down Expand Up @@ -157,4 +156,4 @@ with torch.inference_mode(), torch.cpu.amp.autocast(enabled=amp_enabled):
print(gen_text, total_new_tokens, flush=True)
```

More LLM examples, including usage of low precision data types are available in the [LLM Examples](https://github.com/intel/intel-extension-for-pytorch/tree/main/examples/cpu/llm) section.
More LLM examples, including usage of low precision data types are available in the [LLM Examples](https://github.com/intel/intel-extension-for-pytorch/tree/release/2.5/examples/cpu/llm) section.
4 changes: 2 additions & 2 deletions cpu/2.5.0+cpu/_sources/tutorials/installation.md.txt
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Installation
============

Select your preferences and follow the installation instructions provided on the [Installation page](../../../index.html#installation?platform=cpu&version=v2.4.0%2Bcpu).
Select your preferences and follow the installation instructions provided on the [Installation page](../../../index.html#installation?platform=cpu&version=v2.5.0%2Bcpu).

After successful installation, refer to the [Quick Start](getting_started.md) and [Examples](examples.md) sections to start using the extension in your code.

**NOTE:** For detailed instructions on installing and setting up the environment for Large Language Models (LLM), as well as example scripts, refer to the [LLM best practices](https://github.com/intel/intel-extension-for-pytorch/tree/v2.4.0%2Bcpu/examples/cpu/llm).
**NOTE:** For detailed instructions on installing and setting up the environment for Large Language Models (LLM), as well as example scripts, refer to the [LLM best practices](https://github.com/intel/intel-extension-for-pytorch/tree/v2.5.0%2Bcpu/examples/cpu/llm).
2 changes: 1 addition & 1 deletion cpu/2.5.0+cpu/_sources/tutorials/introduction.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ the `Large Language Models (LLM) <llm.html>`_ section.

Get Started
-----------
- `Installation <../../../index.html#installation?platform=cpu&version=v2.4.0%2Bcpu>`_
- `Installation <../../../index.html#installation?platform=cpu&version=v2.5.0%2Bcpu>`_
- `Quick Start <getting_started.md>`_
- `Examples <examples.md>`_

Expand Down
27 changes: 27 additions & 0 deletions cpu/2.5.0+cpu/_sources/tutorials/releases.md.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,33 @@
Releases
========

## 2.5.0

We are excited to announce the release of Intel® Extension for PyTorch* 2.5.0+cpu which accompanies PyTorch 2.5. This release mainly brings you the support for Llama3.2, optimization on newly launched Intel® Xeon® 6 P-core platform, GPTQ/AWQ format support, and latest optimization to push better performance for LLM models. This release also includes a set of bug fixing and small optimizations. We want to sincerely thank our dedicated community for your contributions. As always, we encourage you to try this release and feedback as to improve further on this product.

### Highlights

* Llama 3.2 support

Meta has newly released [Llama 3.2](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), which includes small and medium-sized vision LLMs (11B and 90B), and lightweight, text-only models (1B and 3B). Intel® Extension for PyTorch* provides [support of Llama 3.2](https://www.intel.com/content/www/us/en/developer/articles/technical/intel-ai-solutions-support-the-new-llama-3-2-model.html) since its launch date with early release version, and now support with this official release.

* Optimization for Intel® Xeon® 6
Intel® Xeon® 6 deliver new degrees of performance with more cores, a choice of microarchitecture, additional memory bandwidth, and exceptional input/output (I/O) across a range of workloads. Intel® Extension for PyTorch* provides dedicated optimization on this new processor family for features like Multiplexed Rank DIMM (MRDIMM), SNC=3 scenario, etc..

* Large Language Model (LLM) optimization:
Intel® Extension for PyTorch* provides more feature support of the weight only quantization including GPTQ/AWQ format support, symmetric quantization of activation and weight, and added chunked prefill/prefix prefill support in LLM module API, etc.. These features enable better adoption of community model weight and provides better performance for low-precision scenarios. This release also extended the optimized models to include newly published Llama 3.2 vision models. A full list of optimized models can be found at [LLM optimization](https://github.com/intel/intel-extension-for-pytorch/tree/v2.5.0+cpu/examples/cpu/llm/inference).

* Bug fixing and other optimization
- Optimized the performance of the IndirectAccessKVCacheAttention kernel
[#3185](https://github.com/intel/intel-extension-for-pytorch/commit/8572e1faf97998783ea2a7fc6ee3094090feebc4) [#3209](https://github.com/intel/intel-extension-for-pytorch/commit/65e96630a2e17f7b762c5c765f10264ad08db098) [#3214](https://github.com/intel/intel-extension-for-pytorch/commit/a04214f7ab4e43648d75abdcf0fae53e5076be2b) [#3218](https://github.com/intel/intel-extension-for-pytorch/commit/f219012ab1babbc67c9b545fa7251cd981a2a3a2) [#3248](https://github.com/intel/intel-extension-for-pytorch/commit/9f6178eb028d36b3ed1f5985e57b7cf160acf38a)
- Fixed the Segmentation fault in the IndirectAccessKVCacheAttention kernel [#3246](https://github.com/intel/intel-extension-for-pytorch/commit/bee5ab644086c9b25eb61916c6773932c74667d3)
- Fixed the correctness issue in the PagedAttention kernel for Llama-68M-Chat-v1 [#3307](https://github.com/intel/intel-extension-for-pytorch/commit/638a7d26acb33af450ea9869b5b43ccdbe0e962b)
- Fixed the support in `ipex.llm.optimize` to ensure `model.generate` returns the correct output type when `return_dict_in_generate` is set to `True`. [#3333](https://github.com/intel/intel-extension-for-pytorch/commit/584a4e2e2c6193b926554f951d2608489cac5d7a)
- Optimized the performance of the Flash Attention kernel [#3291](https://github.com/intel/intel-extension-for-pytorch/commit/8fb43ec45ed93b62efef07f4b2e8dcd7dd502b8b)
- Upgraded oneDNN to v3.6 [#3305](https://github.com/intel/intel-extension-for-pytorch/commit/91639fa0812ee3c12c672002c2bf5cf1cac4bc0a)

**Full Changelog**: https://github.com/intel/intel-extension-for-pytorch/compare/v2.4.0+cpu...v2.5.0+cpu

## 2.4.0

We are excited to announce the release of Intel® Extension for PyTorch\* 2.4.0+cpu which accompanies PyTorch 2.4. This release mainly brings you the support for Llama3.1, basic support for LLM serving frameworks like vLLM/TGI, and a set of optimization to push better performance for LLM models. This release also extends the list of optimized LLM models to a broader level and includes a set of bug fixing and small optimizations. We want to sincerely thank our dedicated community for your contributions. As always, we encourage you to try this release and feedback as to improve further on this product.
Expand Down
28 changes: 18 additions & 10 deletions cpu/2.5.0+cpu/_static/htmls/tbl_deepspeed.html
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,18 @@
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
<td><p>LLAMA</p></td>
<td><p>meta-llama/Llama-3.2-3B-Instruct</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-odd">
<td><p>LLAMA</p></td>
<td><p>meta-llama/Llama-3.2-11B-Vision-Instruct</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
<td><p>GPT-J</p></td>
<td><p>EleutherAI/gpt-j-6b</p></td>
Expand All @@ -53,13 +65,13 @@
<tr class="row-odd">
<td><p>GPT-NEOX</p></td>
<td><p>EleutherAI/gpt-neox-20b</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟨</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
<td><p>DOLLY</p></td>
<td><p>databricks/dolly-v2-12b</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟨</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-odd">
Expand All @@ -77,7 +89,7 @@
<tr class="row-odd">
<td><p>OPT</p></td>
<td><p>facebook/opt-30b</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟨</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
Expand All @@ -89,7 +101,7 @@
<tr class="row-odd">
<td><p>Bloom</p></td>
<td><p>bigscience/bloom-1b7</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟨</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
Expand All @@ -113,7 +125,7 @@
<tr class="row-odd">
<td><p>Baichuan</p></td>
<td><p>baichuan-inc/Baichuan-13B-Chat</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟨</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
<tr class="row-even">
Expand Down Expand Up @@ -207,8 +219,4 @@
<td><p style="text-align: center; vertical-align: middle;">🟩</p></td>
</tr>
</tbody>
</table>
<ul class="simple">
<li><p>🟩 signifies that the model can perform well and with good accuracy (&lt;1% difference as compared with FP32).</p></li>
<li><p>🟨 signifies that the model can perform well while accuracy may not been in a perfect state (&gt;1% difference as compared with FP32).</p></li>
</ul>
</table>
Loading

0 comments on commit ecb3791

Please sign in to comment.