-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsimilarity_matching.py
204 lines (163 loc) · 8.44 KB
/
similarity_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
## similarity_matching.py
# Runs similarity matching on the LFW splits
# Can also be used to find the ideal threshold
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
from PIL import Image
from lib.models.face_recog_net import FaceRecogNet
saved_model_dir = "saved_models"
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Bone Age Test')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=11, metavar='S',
help='random seed (default: 11)')
parser.add_argument('--model-type', default='FaceRecogNet', dest='model_type',
help='Model type to use. (Options: FaceRecogNet)')
parser.add_argument('--act_type', default='ReLU', dest='act_type',
help='activation function to use in UNet. (Options: ReLU, PReLU, LeakyReLU, Swish)')
parser.add_argument('--in_channels', default=1, dest='in_channels')
parser.add_argument('--num_classes', default=10575, dest='num_classes')
# File specific
parser.add_argument('--similarity', default='Cosine', dest='sim_type',
help='Type of similarity scoring/matching to use')
parser.add_argument('--dataset', default='LFW', dest='dataset',
help='Dataset to use to match similarity on')
parser.add_argument('--is_fitting', action='store_true', dest='is_fitting',
help='When True will try and learn/decide the similarity threshold ... '
'(if assigned on the fitting split)')
return parser.parse_args()
def fit(model, dataset, sim_type, device):
if sim_type == 'Cosine':
sim_f = nn.CosineSimilarity()
else:
print(f"Unknown sim_type ({sim_type} given), exiting ...")
exit()
if dataset == 'LFW':
dataset_dir = '../data/LFW/'
imgs_dir = f"{dataset_dir}lfw_cropped/"
def to_filenames(df, same_diff):
def to_filename(name, number, prefix_dir='', postfix_img='_crop_square'):
if prefix_dir != '':
prefix_dir += '\\'
return f"{prefix_dir}{name}\\{name}_{number:04}{postfix_img}.jpg"
return to_filename(df[0], int(df[1])), \
to_filename(df[0] if same_diff == 'same' else df[2],
int(df[2]) if same_diff == 'same' else int(df[3]))
# fit on view1
pairs_file = '../data/LFW/pairs_view1.csv'
pairs = pd.read_csv(pairs_file, names=['name', 'img1', 'img2', 'img3'], skiprows=1)
same_diff = ['same', 'diff']
same_diff_sim_scores = [[], []]
for pair in pairs.values:
filename1, filename2 = to_filenames(pair, 'same' if np.isnan(pair[3]) else 'diff')
try:
img1 = TF.to_tensor(TF.to_grayscale(Image.open(f"{imgs_dir}{filename1}"))).unsqueeze(0).to(device)
img2 = TF.to_tensor(TF.to_grayscale(Image.open(f"{imgs_dir}{filename2}"))).unsqueeze(0).to(device)
except FileNotFoundError:
# print("Missing file (likely due to pruning), skipping ...")
continue
with torch.no_grad():
_, img1_rep = model(img1)
_, img2_rep = model(img2)
sim_score = sim_f(img1_rep, img2_rep)
# print(sim_score.item())
same_diff_sim_scores[0 if np.isnan(pair[3]) else 1].append(sim_score.item())
threshold_scores = []
for thresh in range(0, 1000):
thresh /= 1000
same = [True if ss >= thresh else False for ss in same_diff_sim_scores[0]]
diff = [True if ss < thresh else False for ss in same_diff_sim_scores[1]]
threshold_scores.append(sum(same) + sum(diff))
threshold_scores = np.array(threshold_scores)
best_threshold = np.argmax(threshold_scores) / 1000
best_acc = np.max(threshold_scores) / (len(same_diff_sim_scores[0]) + len(same_diff_sim_scores[1]))
print(f"Threshold {best_threshold} reached the highest accuracy of {best_acc}")
return best_threshold
def test(model, dataset, sim_type, threshold, device):
if sim_type == 'Cosine':
sim_f = nn.CosineSimilarity()
else:
print(f"Unknown sim_type ({sim_type} given), exiting ...")
exit()
if dataset == 'LFW':
dataset_dir = '../data/LFW/'
imgs_dir = f"{dataset_dir}lfw_cropped/"
def to_filenames(df, same_diff):
def to_filename(name, number, prefix_dir='', postfix_img='_crop_square'):
if prefix_dir != '':
prefix_dir += '\\'
return f"{prefix_dir}{name}\\{name}_{number:04}{postfix_img}.jpg"
return to_filename(df[0], int(df[1])), \
to_filename(df[0] if same_diff == 'same' else df[2],
int(df[2]) if same_diff == 'same' else int(df[3]))
accs = []
for i in range(0, 10):
# test on split of view2
pairs_file = f"../data/LFW/test_splits/view2_split_{i}.csv"
pairs = pd.read_csv(pairs_file, names=['name', 'img1', 'img2', 'img3'], delimiter='\t')
same_diff_sim_scores = [[], []]
for pair in pairs.values:
filename1, filename2 = to_filenames(pair, 'same' if np.isnan(pair[3]) else 'diff')
try:
img1 = TF.to_tensor(TF.to_grayscale(Image.open(f"{imgs_dir}{filename1}"))).unsqueeze(0).to(device)
img2 = TF.to_tensor(TF.to_grayscale(Image.open(f"{imgs_dir}{filename2}"))).unsqueeze(0).to(device)
except FileNotFoundError:
# print("Missing file (likely due to pruning), skipping ...")
continue
with torch.no_grad():
_, img1_rep = model(img1)
_, img2_rep = model(img2)
sim_score = sim_f(img1_rep, img2_rep)
# print(sim_score.item())
same_diff_sim_scores[0 if np.isnan(pair[3]) else 1].append(sim_score.item())
same = [True if ss >= threshold else False for ss in same_diff_sim_scores[0]]
diff = [True if ss < threshold else False for ss in same_diff_sim_scores[1]]
threshold_scores = (sum(same) + sum(diff))
acc = threshold_scores / (len(same_diff_sim_scores[0]) + len(same_diff_sim_scores[1]))
accs.append(acc)
print(f"\tThreshold {threshold} had an accuracy of {acc} on split {i}")
accs = np.array(accs)
print(f"Threshold {threshold} had a mean accuracy of {accs.mean()} with an std of {accs.std()}")
def main():
# Training settings
args = parse_args()
print("Running similarity matching on LFW splits.")
use_cuda = not args.no_cuda and torch.cuda.is_available()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.act_type == "ReLU":
act_type = nn.ReLU
elif args.act_type == "PReLU":
act_type = nn.PReLU
elif args.act_type == "LeakyReLU":
act_type = nn.LeakyReLU
else:
print(f"Invalid ACT_type given! (Got {args.act_type})")
act_type = nn.ReLU
if args.model_type == 'FaceRecogNet':
model = FaceRecogNet(in_channels=args.in_channels, num_classes=args.num_classes, act_type=act_type).to(device)
model_name = "FaceRecogNet"
model.load_state_dict(
torch.load(f"saved_models/s7_casia_adam_FaceRecogNet_e50_ReLU_BN_bs100.pt",
map_location=device))
else:
print(f"No valid model type given! (got model_type: {args.model_type})")
exit(0)
# Set to evaluation mode, we're no longer training
model.eval()
threshold = -1
if args.is_fitting:
threshold = fit(model, args.dataset, args.sim_type, device=device)
# else:
test(model, args.dataset, args.sim_type, threshold=(0.327 if threshold == -1 else threshold), device=device)
if __name__ == '__main__':
main()