Skip to content

hyex-research/AquaFetch

Repository files navigation

Documentation Status PyPI version PyPI - Python Version

A Unified Python Interface for Water Resource Dataset Acquisition and Harmonization

AquaFetch is a Python package designed for the automated downloading, parsing, cleaning, and harmonization of freely available water resource datasets related to rainfall-runoff processes, surface water quality, and wastewater treatment. The package currently supports approximately 70 datasets, each containing between 1 to hundreds of parameters. It facilitates the downloading and transformation of raw data into consistent, easy-to-use, analysis-ready formats. This allows users to directly access and utilize the data without labor-intensive and time-consuming preprocessing.

The package comprises three submodules, each representing a different type of water resource data: rr for rainfall-runoff processes, wq for surface water quality, and wwt for wastewater treatment. The rr submodule offers data for 47,716 catchments worldwide, encompassing both dynamic and static features for each catchment. The dynamic features consist of observed streamflow and meteorological time series, averaged over the catchment area, available at daily or hourly time steps. Static features include constant parameters such as land use, soil, topography, and other physiographical characteristics, along with catchment boundaries. This submodule not only provides access to established rainfall-runoff datasets such as CAMELS and LamaH but also introduces new datasets compiled for the first time from publicly accessible online data sources. The wq submodule offers access to 16 surface water quality datasets, each containing various water quality parameters measured across different spaces and times. The wwt submodule provides access to over 20,000 experimental measurements related to wastewater treatment techniques such as adsorption, photocatalysis, membrane filtration, and sonolysis.

The development of AquaFetch was inspired by the growing availability of diverse water resource datasets in recent years. As a community-driven project, the codebase is structured to allow contributors to easily add new datasets, ensuring the package continues to expand and evolve to meet future needs.

Installation

You can install AquaFetch using pip

pip install aqua-fetch

The package can be installed using GitHub link from the master branch

python -m pip install git+https://github.com/hyex-research/AquaFetch.git

To install from a specific branch such as dev branch which contains more recent code

python -m pip install git+https://github.com/hyex-research/AquaFetch.git@dev

The above code will install minimal depencies required to use the library which include numpy, pandas and requests. To install the library with full list of dependencies use the all option during installation.

python -m pip install "AquaFetch[all] @ git+https://github.com/hyex-research/AquaFetch.git"

This will install addtional optional depencdies which include xarray, pyshp, netCDF and easy_mpl.

Usage

The following sections describe brief usage of datasets from each of the three submodules i.e. rr, wq and wwt. For detailed usage examples see docs

The core of rr sub-module is the RainfallRunoff class. This class fetches dynamic features (catchment averaged hydrometeorological data at daily or sub-daily timesteps), static features (catchment characteristics related to topography, soil, land use-land cover, or hydrological indices that have constant values over time) and the catchment boundary. The following example demonstrates how to fetch data for CAMELS_AUS. However, the method is the same for all available rainfall-runoff datasets.

from aqua_fetch import RainfallRunoff
dataset = RainfallRunoff('CAMELS_AUS')  # instead of CAMELS_AUS, you can provide any other dataset name
df = dataset.fetch(stations=1, as_dataframe=True)
df = df.unstack() # the returned dataframe is a multi-indexed dataframe so we have to unstack it
df.columns = df.columns.get_level_values('dynamic_features')
df.shape
   (21184, 26)
# get name of all stations as list
stns = dataset.stations()
len(stns)
   222
# get data of 10 % of stations as dataframe
df = dataset.fetch(0.1, as_dataframe=True)
df.shape
   (550784, 22)
# The returned dataframe is a multi-indexed data
df.index.names == ['time', 'dynamic_features']
    True
# get data by station id
df = dataset.fetch(stations='224214A', as_dataframe=True).unstack()
df.shape
    (21184, 26)
# get names of available dynamic features
dataset.dynamic_features
# get only selected dynamic features
data = dataset.fetch(1, as_dataframe=True,
...  dynamic_features=['tmax_AWAP', 'precipitation_AWAP', 'et_morton_actual_SILO', 'streamflow_MLd']).unstack()
data.shape
   (21184, 4)
# get names of available static features
dataset.static_features
# get data of 10 random stations
df = dataset.fetch(10, as_dataframe=True)
df.shape  # remember this is a multiindexed dataframe
   (21184, 260)
# when we get both static and dynamic data, the returned data is a dictionary
# with ``static`` and ``dyanic`` keys.
data = dataset.fetch(stations='224214A', static_features="all", as_dataframe=True)
data['static'].shape, data['dynamic'].shape
((1, 166), (550784, 1))
coords = dataset.stn_coords() # returns coordinates of all stations
coords.shape
    (472, 2)
dataset.stn_coords('3001')  # returns coordinates of station whose id is 3001
    18.3861 80.3917
dataset.stn_coords(['3001', '17021'])  # returns coordinates of two stations

The datasets related to surface water quality are available using functional or objected-oriented API depending upon the complexity of the dataset. The following example shows usage of two surface water quality related datasets. For complete name of Python functions and classes see documentation

from aqua_fetch import busan_beach
dataframe = busan_beach()
dataframe.shape
(1446, 14)
dataframe = busan_beach(target=['tetx_coppml', 'sul1_coppml'])
dataframe.shape
(1446, 15)

from aqua_fetch import GRQA
ds = GRQA(path="/mnt/datawaha/hyex/atr/data")
print(ds.parameters)
len(ds.parameters)
country = "Pakistan"
len(ds.fetch_parameter('TEMP', country=country))

The datasets for wastewater treatment are all available in function API design. These datasets consist of experimental conducted to remove certain pollutants from wastewater. For complete list of functions, see documentation

from aqua_fetch import ec_removal_biochar
data, *_ = ec_removal_biochar()
data.shape
(3757, 27)
data, encoders = ec_removal_biochar(encoding="le")
data.shape
(3757, 27)

from aqua_fetch import mg_degradation
mg_data, catalyst_encoder, anion_encoder = mg_degradation()
mg_data.shape
(1200, 12)
# the default encoding is None, but if we want to use one hot encoder
mg_data_ohe, cat_enc, an_enc = mg_degradation(encoding="ohe")
mg_data_ohe.shape
(1200, 31)

Summary of rainfall runoff Datasets

Name Num. of daily stations Num. of hourly stations Num. of dynamic features Num. of static features Temporal Coverage Spatial Coverage Ref.
Arcticnet 106 27 35 1979 - 2003 Arctic (Russia) R-Arcticnet
CAMELS_AUS 222, 561 26 166, 187 1900 - 2018 Australia Flower et al., 2021
CAMELS_GB 671 10 145 1970 - 2015 Britain Coxon et al., 2020
CAMELS_BR 897 10 67 1920 - 2019 Brazil Chagas et al., 2020
CAMELS_US 671 8 59 1980 - 2014 USA Newman et al., 2014
CAMELS_CL 516 12 104 1913 - 2018 Chile Alvarez-Garreton et al., 2018
CAMELS_DK 304 13 119 1989 - 2023 Denmark Liu et al., 2024
CAMELS_CH 331 9 209 1981 - 2020 Switzerland, Austria, France, Germany Italy Hoege et al., 2023
CAMELS_DE 1555 21 111 1951 - 2020 Germany Loritz et al., 2024
CAMELS_SE 50 4 76 1961 - 2020 Sweden Teutschbein et al., 2024
Caravan_DK 308 38 211 1981 - 2020 Denmark Koch, J. (2022)
LamaHCE 859 859 22 80 1981 - 2019 Central Europe Klingler et al., 2021
LamaHIce 111 111 36 154 1950 - 2021 Iceland Helgason and Nijssen 2024
HYSETS 14425 5 28 1950 - 2018 North America Arsenault et al., 2020
GRDCCaravan 5357 39 211 1950 - 2023 Global Faerber et al., 2023
Bull 484 55 214 1990 - 2020 Spain Aparicio et al., 2024
WaterBenchIowa 125 3 7 2011 - 2018 Iowa (USA) Demir et al., 2022
CCAM 102 16 124 1990 - 2020 China Hao et al., 2021
RRLuleaSweden 1 2 0 2016 - 2019 Lulea (Sweden) Broekhuizen et al., 2020
CABra 735 12 97 1980 - 2010 Brazil Almagro et al., 2021
HYPE 561 9 3 1985 - 2019 Costa Rica Arciniega-Esparza and Birkel, 2020
Ireland 464 27 35 1992 - 2020 Ireland EPA Ireland
Spain 889 27 35 1979 - 2020 Spain ceh-flumen64
Simbi 70 3 232 1920 - 1940 Haiti Bathelemy et al., 2024
CAMELS_IND 472 20 210 1980 - 2020 India Mangukiya et al., 2024
Japan 751 696 27 35 1979 - 2022 Japan river.go.jp
Thailand 73 27 35 1980 - 1999 Thailand RID project
USGS 12004 1541 5 27 1950 - 2018 USA USGS nwis
Finland 669 27 35 2012 - 2023 Finland Nascimento et al., 2024
Poland 1287 27 35 1992 - 2020 Poland Nascimento et al., 2024
Portugal 280 27 35 1992 - 2020 Portugal SNIRH Portugal
Italy 294 27 35 1992 - 2020 Italy Nascimento et al., 2024
CAMELS_FR 654 22 344 1970 - 2021 France Delaigue et al., 2024

Summary of Water Quality Datasets

Name Variables Covered Temporal Coverage Spatial Coverage Ref.
SWatCh 24 1960 - 2022 Global Lobke et al., 2022
GRQA 42 1898 - 2020 Global Virro et al., 2021
Quadica 1950 - 2018 Germany Ebeling et al., 2022
RC4USCoast 21 1850 - 2020 USA Gomez et al., 2022
Busan Beach 2018 - 2019 Busan, South Korea Jang et al., 2021
Ecoli Mekong River 10 2011 - 2021 Mekong river (Houay Pano) Boithias et al., 2022
Ecoli Mekong River (Laos) 10 2011 - 2021 Mekong River (Laos) Boithias et al., 2022
Ecoli Houay Pano (Laos) 10 2011 - 2021 Houay Pano (Laos) Boithias et al., 2022
CamelsChem 18 1980 - 2018 Conterminous USA Sterle et al., 2024
GRiMeDB 18 - Global Stanley et al., 2023
SanFrancisco Bay 18 1969 - 2015 Sans Francisco Bay (USA) Cloern et al., 2017
Sylt Roads 18 1973 - 2019 North Sea (Arctic) Rick et al., 2023
Buzzards Bay 64 1992 - 2018 Buzzards Bay (USA) Jakuba et al., 2021
White Clay Creek 2 1977 - 2017 White Clay Creek (USA) Newbold and Damiano 2013
Selune River 5 2021 - 2022 Selune River (France) Moustapha Ba et al., 2023

Summary of datasets related to wastewater treatment

Treatment Process Parameters Target Pollutant Data Points Reference
Adsorption 26 Emerg. Contaminants 3,757 Jaffari et al., 2023
Adsorption 15 Cr 219 Ishtiaq et al., 2024
Adsorption 30 heavy metals 1,518 Jaffari et al., 2023
Adsorption 30 po4 5,014 Iftikhar et al., 2024
Adsorption 12 Industrial Dye 1,514 Iftikhar et al., 2023
Adsorption 17 Heavy metals 689 Shen et al., 2023
Adsorption 8 P 504 Leng et al., 2024
Adsorption 8 N 211 Leng et al., 2024
Adsorption 13 As 1,605 Huang et al., 2024
Photocatalysis 11 Melachite Green 1,200 Jaffari et a., 2023
Photocatalysis 23 Dyes 1,527 Kim et al., 2024
Photocatalysis 15 2,4,Dichlorophenoxyacetic acid 1,044 Kim et al., 2024
Photocatalysis - - 2,078 submitted et al., 2024
Photocatalysis 8 Tetracycline 374 Abdi et al., 2022
Photocatalysis 7 TiO2 446 Jiang et al., 2020
Photocatalysis 8 multiple 457 Jiang et al., 2020
membrane 18 micropollutants 1,906 Jeong et al., 2021
membrane 18 heavy metals 1,586 Jeong et al., 2023
sonolysis 6 Cyanobacteria 314 Jaffari et al., 2024

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •