A fully open reproduction of DeepSeek-R1. This repo is a work in progress, let's build it together!
The goal of this repo is to build the missing pieces of the R1 pipeline such that everybody can reproduce and build on top of it. The project is simple by design and mostly consists of:
src/open_r1
contains the scripts to train and evaluate models as well as generate synthetic data:grpo.py
: trains a model with GRPO on a given dataset.sft.py
: simple SFT of a model on a dataset.evaluate.py
: evaluates a model on the R1 benchmarks.generate.py
: generate synthetic data from a model using Distilabel.
Makefile
contains an easy to run command for each step in the R1 pipeline leveraging the scripts above.
We will use the DeepSeek-R1 tech report as a guide, which can roughly be broken down into three main steps:
- Step 1: replicate the R1-Distill models by distilling a high-quality corpus from DeepSeek-R1.
- Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will likely involve curating new, large-scale datasets for math, reasoning, and code.
- Step 3: show we can go from base model to RL-tuned via multi-stage training.
To run the code in this project, first, create a Python virtual environment using e.g. Conda:
conda create -n openr1 python=3.11 && conda activate openr1
Next, install vLLM:
pip install vllm==0.6.6.post1
# For HF (cluster only has CUDA 12.1)
pip install vllm==0.6.6.post1 --extra-index-url https://download.pytorch.org/whl/cu121
This will also install PyTorch v2.5.1
and it is very important to use this version since the vLLM binaries are compiled for it. You can then install the remaining dependencies for your specific use case via pip install -e .[LIST OF MODES]
. For most contributors, we recommend:
pip install -e ".[dev]"
Next, log into your Hugging Face and Weights and Biases accounts as follows:
huggingface-cli login
wandb login
Finally, check your system has Git LFS installed so that you can load and push models/datasets to the Hugging Face Hub:
git-lfs --version
If it isn't installed, run:
sudo apt-get install git-lfs
We support training models with either DDP or DeepSpeed ZeRO-2 and ZeRO-3. To switch between methods, simply change the path to the accelerate
YAML config in configs
.
Note
The training commands below are configured for a node of 8 x H100s (80GB). For different hardware and topologies, you may need to tune the batch size and number of gradient accumulation steps.
To run SFT on a dataset distilled from DeepSeek-R1 with reasoning traces such as Bespoke-Stratos-17k, run:
accelerate launch --config_file=configs/zero3.yaml src/open_r1/sft.py \
--model_name_or_path Qwen/Qwen2.5-Math-1.5B-Instruct \
--dataset_name HuggingFaceH4/Bespoke-Stratos-17k \
--learning_rate 2.0e-5 \
--num_train_epochs 1 \
--packing \
--max_seq_length 4096 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 4 \
--gradient_checkpointing \
--bf16 \
--logging_steps 5 \
--eval_strategy steps \
--eval_steps 100 \
--output_dir data/Qwen2.5-1.5B-Open-R1-Distill
To launch a Slurm job, run:
sbatch --output=/path/to/logs/%x-%j.out --err=/path/to/logs/%x-%j.err slurm/sft.slurm {model} {dataset} {accelerator}
Here {model}
and {dataset}
refer to the model and dataset IDs on the Hugging Face Hub, while {accelerator}
refers to the choice of 🤗 Accelerate config in configs
.
accelerate launch --config_file configs/zero3.yaml src/open_r1/grpo.py \
--output_dir DeepSeek-R1-Distill-Qwen-7B-GRPO \
--model_name_or_path deepseek-ai/DeepSeek-R1-Distill-Qwen-7B \
--dataset_name AI-MO/NuminaMath-TIR \
--max_prompt_length 256 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--logging_steps 10 \
--bf16
We use lighteval
to evaluate models, with custom tasks defined in src/open_r1/evaluate.py
. For models which fit on a single GPU, run:
MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
MODEL_ARGS="pretrained=$MODEL,dtype=float16,max_model_length=32768,gpu_memory_utilisation=0.8"
TASK=aime24
OUTPUT_DIR=data/evals/$MODEL
lighteval vllm $MODEL_ARGS "custom|$TASK|0|0" \
--custom-tasks src/open_r1/evaluate.py \
--use-chat-template \
--system-prompt="Please reason step by step, and put your final answer within \boxed{}." \
--output-dir $OUTPUT_DIR
To increase throughput across multiple GPUs, use data parallel as follows:
NUM_GPUS=8
MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
MODEL_ARGS="pretrained=$MODEL,dtype=float16,data_parallel_size=$NUM_GPUS,max_model_length=32768,gpu_memory_utilisation=0.8"
TASK=aime24
OUTPUT_DIR=data/evals/$MODEL
lighteval vllm $MODEL_ARGS "custom|$TASK|0|0" \
--custom-tasks src/open_r1/evaluate.py \
--use-chat-template \
--system-prompt="Please reason step by step, and put your final answer within \boxed{}." \
--output-dir $OUTPUT_DIR
For large models which require sharding across GPUs, use tensor parallel and run:
NUM_GPUS=8
MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
MODEL_ARGS="pretrained=$MODEL,dtype=float16,tensor_parallel_size=$NUM_GPUS,max_model_length=32768,gpu_memory_utilisation=0.8"
TASK=aime24
OUTPUT_DIR=data/evals/$MODEL
export VLLM_WORKER_MULTIPROC_METHOD=spawn
lighteval vllm $MODEL_ARGS "custom|$TASK|0|0" \
--custom-tasks src/open_r1/evaluate.py \
--use-chat-template \
--system-prompt="Please reason step by step, and put your final answer within \boxed{}." \
--output-dir $OUTPUT_DIR
You can also launch an evaluation with make evaluate
, specifying the model, task, and optionally the parallelism technique and number of GPUs.
To evaluate on a single GPU:
make evaluate MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-32B TASK=aime24
To use Data Parallelism:
make evaluate MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-32B TASK=aime24 PARALLEL=data NUM_GPUS=8
To use Tensor Parallelism:
make evaluate MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-32B TASK=aime24 PARALLEL=tensor NUM_GPUS=8
The following example can be run in 1xH100. First install the following dependencies:
pip install "distilabel[vllm]>=1.5.2"
Now save the following snippet into a file named pipeline.py
and run with python pipeline.py
. It will generate for each of the 10 examples 4 generations (change the username for the repository to your org/user name):
from datasets import load_dataset
from distilabel.models import vLLM
from distilabel.pipeline import Pipeline
from distilabel.steps.tasks import TextGeneration
prompt_template = """\
You will be given a problem. Please reason step by step, and put your final answer within \boxed{}:
{{ instruction }}"""
dataset = load_dataset("AI-MO/NuminaMath-TIR", split="train").select(range(10))
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" # Exchange with another smol distilled r1
with Pipeline(
name="distill-qwen-7b-r1",
description="A pipeline to generate data from a distilled r1 model",
) as pipeline:
llm = vLLM(
model=model_id,
tokenizer=model_id,
extra_kwargs={
"tensor_parallel_size": 1,
"max_model_len": 8192,
},
generation_kwargs={
"temperature": 0.6,
"max_new_tokens": 8192,
},
)
prompt_column = "problem"
text_generation = TextGeneration(
llm=llm,
template=prompt_template,
num_generations=4,
input_mappings={"instruction": prompt_column} if prompt_column is not None else {}
)
if __name__ == "__main__":
distiset = pipeline.run(dataset=dataset)
distiset.push_to_hub(repo_id="username/numina-deepseek-r1-qwen-7b")
Take a look at the sample dataset at HuggingFaceH4/numina-deepseek-r1-qwen-7b.
To run the bigger DeepSeek-R1, we used 2 nodes, each with 8×H100 GPUs using the slurm file present in this repo at slurm/generate.slurm
. First, install the dependencies:
(for now we need to install the vllm dev wheel that fixes the R1 cuda graph capture)
pip install https://wheels.vllm.ai/221d388cc5a836fa189305785ed7e887cea8b510/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu121
pip install "distilabel[vllm,ray,openai]>=1.5.2"
And then run the following command:
sbatch slurm/generate.slurm \
--hf-dataset AI-MO/NuminaMath-TIR \
--temperature 0.6 \
--prompt-column problem \
--model deepseek-ai/DeepSeek-R1 \
--hf-output-dataset username/r1-dataset
Note
While the job is running, you can setup an SSH tunnel through the cluster login node to access the Ray dashboard from your computer running ssh -L 8265:ray_ip_head_node:8265 <login_node>
, then browsing http://localhost:8265
Contributions are welcome. Please refer to #23.