Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

zh-CN: small fixes #709

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion chapters/zh-CN/chapter1/1.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@
本课程的每一章都设计为在 1 周内完成,每周大约需要 6-8 小时的学习时间。 但是,您可以花尽可能多的时间来完成课程。

- **如果我有问题,我可以在哪里提问?**
如果您对课程的任何部分有疑问,只需单击页面顶部的“*提问*”横幅,系统就会自动重定向到 [Hugging Face 论坛](https:// discuss.huggingface.co/):
如果您对课程的任何部分有疑问,只需单击页面顶部的“*提问*”横幅,系统就会自动重定向到 [Hugging Face 论坛](https://discuss.huggingface.co/):

<img src="https://huggingface.co/datasets/huggingface-course/documentation-images/resolve/main/en/chapter1/forum-button.png" alt="Hugging Face论坛链接" width=" 75%">

Expand Down
2 changes: 1 addition & 1 deletion chapters/zh-CN/chapter1/3.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ classifier(
让我们来看看其中的一些吧!

## 零样本分类 [[零样本分类]]
我们将首先处理一项非常具挑战性的任务,我们需要对尚未标记的文本进行分类。这是实际项目中的常见场景,因为注释文本通常很耗时并且需要领域专业知识。对于这项任务**zero-shot-classification**pipeline非常强大:它允许您直接指定用于分类的标签,因此您不必依赖预训练模型的标签。下面的模型展示了如何使用这两个标签将句子分类为正面或负面——但也可以使用您喜欢的任何其他标签集对文本进行分类。
我们将首先处理一项非常具挑战性的任务,我们需要对尚未标记的文本进行分类。这是实际项目中的常见场景,因为注释文本通常很耗时并且需要领域专业知识。对于这项任务**zero-shot-classification**pipeline非常强大:它允许您直接指定用于分类的标签,因此您不必依赖预训练模型的标签。你已经见过了如何使用那两个标签将句子分类为正面或负面——但也可以使用您喜欢的任何其他标签集对文本进行分类。

```python
from transformers import pipeline
Expand Down
Loading