Skip to content

MLE Adjustment for High-Dimensional Logistic Regression

Notifications You must be signed in to change notification settings

hoxo-m/adjustMLE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLE Adjustment for High-Dimensional Logistic Regression

Koji Makiyama (@hoxo-m)

Overview

The maximum likelihood estimator (MLE) of the logistic regression model is not an unbiased estimator. Therefore, estimates calculated with glm() contain bias. Since the MLE satisfies consistency and asymptotic normality, the bias can be disregarded when the sample size is large. However, in the analysis of high-dimensional data, the sample size is sometimes relatively small compared to the dimension of input variables.

For example, let’s consider a scenario where the number of input variables p = 300, and the sample size n = 2000. Additionally, the true parameters beta consist of

  • beta = 10 for the first 1/3,
  • beta = -10 for the next 1/3, and
  • beta = 0 for the remaining 1/3.

In such a case, the MLE returned by glm() contains a non-negligible bias.

p <- 300
n <- 2000

set.seed(314)
x <- rnorm(n * p, mean = 0, sd = sqrt(1/n))
X <- matrix(x, nrow = n, ncol = p)
beta <- matrix(rep(c(10, -10, 0), each = p/3), nrow = p, ncol = 1)
prob <- plogis(X %*% beta)
y <- rbinom(n, 1, prob)

fit <- glm(y ~ X, family = binomial, x = TRUE)

library(ggplot2)
theme_set(theme_bw())
df <- data.frame(index = seq_len(p), mle = coef(fit)[-1])
ggplot(df, aes(index, mle)) +
  geom_point(color = "blue") +
  annotate("segment", x = c(0, 100, 200), xend = c(100, 200, 300), 
           y = c(10, -10, 0), yend = c(10, -10, 0), linewidth = 1.5) +
  scale_x_continuous(breaks = c(0, 100, 200, 300)) +
  ylim(-30, 30) + xlab("Index of parameters") + ylab("MLE") +
  ggtitle("True (black line) and MLE (blue point)")

You can see that the blue points (MLE) are significantly outside the perimeter of the black line (true).

The purpose of this package is to alleviate the bias by adjusting the MLE. To achieve this, we implemented two methods:

  • “ProbeFrontier,” as proposed by Sur and Candès (2018), and
  • “SLOE,” as proposed by Yadlowsky et al. (2021).

The adjustMLE function in our package is designed to mitigate this bias.

library(adjustMLE)

fit_adj <- adjustMLE(fit)

df <- data.frame(index = seq_len(p), mle = coef(fit_adj)[-1])
ggplot(df, aes(index, mle)) +
  geom_point(color = "blue") +
  annotate("segment", x = c(0, 100, 200), xend = c(100, 200, 300), 
           y = c(10, -10, 0), yend = c(10, -10, 0), linewidth = 1.5) +
  scale_x_continuous(breaks = c(0, 100, 200, 300)) +
  ylim(-30, 30) + xlab("Index of parameters") + ylab("Adjusted MLE") +
  ggtitle("True (black line) and adjusted MLE (blue point)")

Estimated Parameters for Adjustment Methods

fit_adj$parameters
#> $alpha
#> [1] 1.219645
#> 
#> $sigma_squared
#> [1] 10.96403
#> 
#> $lambda
#> [1] 1.851831
#> 
#> $factor_for_chi_squared
#> [1] 0.8880964
#> 
#> $kappa
#> [1] 0.15
#> 
#> $kappa_hat
#> [1] NA
#> 
#> $gamma_hat
#> [1] 3.589527
#> 
#> $eta_hat
#> [1] 20.81103

Installation

You can install the package from GitHub.

install.packages("remotes") # if you have not installed "remotes" package
remotes::install_github("hoxo-m/adjustMLE")

Related Work

References

  • Sur, P., & Candès, E.J. (2018). A modern maximum-likelihood theory for high-dimensional logistic regression. Proceedings of the National Academy of Sciences of the United States of America, 116, 14516 - 14525.
  • Yadlowsky, S., Yun, T., McLean, C.Y., & D’Amour, A. (2021). SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Neural Information Processing Systems.

About

MLE Adjustment for High-Dimensional Logistic Regression

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages