Skip to content

hiejulia/Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Buy Me A Coffee

MACHINE-LEARNING

Algorithms

  • Logistic Regression
  • Linear regression
    • multiple linear regression
  • LSTM
  • Gradient descent
  • KNN
  • Naive Bayes
  • Support Vector machine
  • Decision tree
    • random forest
    • homogenity
    • gini index
    • information gain
    • detect heart desease
    • ads
    • disads :
      • overfitting
  • Ensembling
    • boosting
    • stacking
    • random subspaces
    • Extreme randomized tree
  • Bayesian network
  • Association rule learning
  • NLP
    • stop words
    • name entity recognition
    • parts of speech
    • relationships
    • tf-idf
  • Anomaly detection
  • association rule learning
  • Semi supervised learning algo
    • Deep belief network
  • K Means cluster
  • XGBoost classifier
  • K Fold crossvalidation

Project

  • Classify malware family using K Means cluster
  • Prediction analysis with different algorithms
  • Anomaly detection with Isolation Forest algorithm
  • Analyze time series algorithms
  • Recommendation algorithms
    • Correlation based PearR
    • KNN
    • Cosine similarity
  • Ensembling using in project

ML production pipeline

  • Data acquisition
    • crawl
    • sources : text-based documentation, multimedia, video, audio
  • ML model
    • seletec model
    • train
  • fine tune model
  • Batch learning

  • Online learning
  • Save trained model (joblib)
  • Monitor system
  • Update dataset and retrain model regularly
  • Automate
    • collect data regularly
    • script to train model & fune tuning hyperparameters automatically, run every (week)
    • Script to deploy model to prod
    • script to evaluate model input data quality
    • Backup model

Large scale ML pipeline

Scale & ML distributed

Cloud native ML

  • Google Cloud AI platform

Recommendation system

Tech stack

Machine learning

Algorithms

performance tuning

ML pipeline

ML deployment pipeline

Deep learning

Deep learning

ML | DL for mobile devices

  • coreML
  • tensorflow Lite
  • ML kit
  • Huawei AI mobile computing
  • real time object classification
    • Core ML
    • CNN
    • 1,000 imagenet
    • dynamic model deployment
    • on device training
    • benchmark DL model on iOS devices

OpenCV

  • Hand gesture recognition using kinect depth sensor

GPU programming with CUDA

  • Parallelization and Amdahl's Law

  • Stack :

    • Profiler: cProfile
    • python -m cProfile -s cumtime mandelbrot1.py > mandelbrot_profile.txt
  • Set up : 64bit Intel/AMD based PC - Ubuntu LTS, 4GB RAM, NVIDIA Geforce GTX 1050 GPU +

    • Intel's Math Kernel Library (MKL)
    • macOS, Red Hat/Fedora, OpenSUSE, and CENTOS) should consult the official NVIDIA CUDA documentation (https://docs.nvidia.com/cuda/)
    • Cloud : Azure, AWS (read driver, compiler, CUDA toolkit )
    • Install : NVIDIA GPU driver
    • Set up C/C++ env
    • Install NVIDIA CUDA toolkit
    • Set up Python for GPU
  • PyCUDA : memory capacity, core, transfer data between host -> device

  • Scan CUDA kernel

  • Streaming Multiprocessors (SMs)

  • http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Test GPU on Cloud AWS
  • AWS GPU instance

Resource

Archived repo: https://github.com/hiejulia/Machine-Learning---Deep-Learning---AI

Resource

-http://archive.ics.uci.edu/ml/index.php

Case study

  • Hotstar
  • Netflix

About

Machine Learning projects

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published