Skip to content

harnalashok/deeplearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Examples used in my DeepLearning Classes

File: cats_dogs_classification.ipynb
Objectives:

  • Building powerful image classification models using very little data
  • Using image data-augmentation techniques
  • Predicting cats and dogs--Kaggle
  • Calcualting model weights, stage-by-stage
  • Saving model-weights and model-architecture to files
  • Loading saved model-architecture and model-weights

File: cifar10_classification.ipynb
Objective:

  • CIFAR10 image classification using deep learning

File: cifar10_classification_functionalModeling.ipynb
Objective:

  • CIFAR10 image classification with deep-learning CNN
  • Building Functional models (Use GPU not CPU)

File: classify_with_vgg16_softmax.ipynb
Objectives:

  • Transfer Learning: Building powerful image classification models using very little data using pre-trained applications
  • Feature Enngineering: Using engineered features with Random Forest Classifier
  • Learning Rate Annealing: Moderating Learning rate on/near plateau

File: generators in python.ipynb
Objectives:

  • How a generator works
  • Applications of a generator

File: expts_with_mobilenet.ipynb
Objectives:

  • Using mobilenet
  • Using mobilenet on browser
  • Using Image Augmentaion techniques from libraries other than tensorflow/keras
  • Transfer learning using Mobilenet

File: keras_functional.ipynb
Objective:

  • Using keras functional API

File: image_augmentation.ipynb
Objective(s):

How Image augmentation is performed. Image augmentation basics


File: learningRateScheduler_tensorbard.ipyb****
*Objectives: *

  • To use multiple callbacks
  • To use learning-rate scheduler
  • To see results on tensorboard

File(s):
keras_hyperparameterOpt_class.ipynb
keras_hyperparameterOpt.ipynb

Objective:

  • Hyperparameter tuning example of Neural Network using keras-tuner of dense network

File: plot_vgg16_layer_features.ipynb
Objectives:

  • Experimenting with Very Deep ConvNets: VGG16
  • Peeping into layers and plotting extracted-features
  • Visualize filters

File: pretrained_layers_autoencoder_I.ipynb
Objectives

  • Building autoencoder using Model class subclassing
  • Using pre-trained autoencoder layers in a classifier
  • Comparing Classifer performance with and without pre-trained
  • Using keras model as a layer
  • A pre-trained model using autoencoder gives better classification

File: pretrained_layers_autoencoder_II.ipynb
Objectives:

  • Building autoencoder using Model class subclassing
  • Training autoencoder with gaussian noise added
  • Using pre-trained autoencoder layers in a classifier
  • Comparing Classifer performance with and without pre-trained
  • Using keras model as a layer
  • A pre-trained model using autoencoder-with-noise added gives better classification

File: pretrained_layers_autoencoder_III.ipynb
Objectives

  • Building autoencoder using Model class subclassing
  • Building autoencoder using Functional API
  • Training autoencoder with gaussian noise added
  • Using pre-trained autoencoder layers in a classifier
  • Comparing Classifer performance with and without pre-trained
  • Using keras model as a layer
  • A pre-trained model using autoencoder-with-noise added gives better classification

File: subClassingKerasModel.ipynb
Objective:

  • Subclassing keras 'Model' class to create Dynamic models
  • Two examples

File: reusing_trained_layers.ipynb
*Objective: *

  • Reuse layers from one neural network in another.
  • Ist model was trained using a different set of class labels than present in the IInd case

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published