Python Jupyter Notebook leveraging Transfer Learning and Convolutional Neural Networks implemented with Keras.
Part of the Kaggle competition.
Submitted Kernel with 0.958 LB score.
Check out corresponding Medium article:
Histopathologic Cancer Detector - Machine Learning in Medicine
Dataset: Link
Description: Binary classification whether a given histopathologic image contains a tumor or not.
Training: 153k (0.9) images
Validation: 17k (0.1) images
Testing: 57.5k images
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 96, 96, 3) 0
__________________________________________________________________________________________________
xception (Model) (None, 3, 3, 2048) 20861480 input_1[0][0]
__________________________________________________________________________________________________
NASNet (Model) (None, 3, 3, 1056) 4269716 input_1[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 2048) 0 xception[1][0]
__________________________________________________________________________________________________
global_average_pooling2d_2 (Glo (None, 1056) 0 NASNet[1][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 3104) 0 global_average_pooling2d_1[0][0]
global_average_pooling2d_2[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 3104) 0 concatenate_5[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 1) 3105 dropout_1[0][0]
==================================================================================================
Total params: 25,134,301
Trainable params: 25,043,035
Non-trainable params: 91,266
__________________________________________________________________________________________________
Kaggle score: 0.958
Greg (Grzegorz) Surma