Skip to content

fastlabel/fastlabel-mxnet-ssd

Repository files navigation

fastlabel-mxnet-ssd

Setup

Install libraries

$ pip install -r requirements.txt

Clone original Face Recognition repository

$ git submodule init
$ git submodule update

How to execute

Prepare inputs data

Add downloaded model file(name must be model.tar.gz) to ./data/inputs/model/. Add images to ./data/inputs/images/.

Prediction

$ python main.py

Tips

  • COLOR_PALETTE is defined in color_palette.py. You can change it if you want.
  • CONFIDENCE_THRESHOLD is defined in main.py. You can change it if you want.

Output

JSON

In ./data/outputs/.

[
  {
    "image": "data/inputs/images/pedestrian.png",
    "prediction": [ // [annotation index, confidence score, top-left x, top-left y, bottom-right x, bottom-right y point]
      [
        0.0, 0.6833887696266174, 237.33348083496094, 53.119441986083984,
        349.9132080078125, 350.6388244628906
      ],
      [
        0.0, 0.665876030921936, 18.011009216308594, 81.62196350097656,
        133.0487518310547, 311.8656005859375
      ]
    ]
  },
  ...
]

Images

In ./data/outputs/images. The annotated images will be output.

Model

In ./data/outputs/model. The unzipped files and the deployable model files will be output.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages