-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
365 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,365 @@ | ||
import argparse | ||
import pickle | ||
from pathlib import Path | ||
|
||
import dgl | ||
import torch as th | ||
import numpy as np | ||
|
||
from model.MECCH import MECCH, khopMECCH | ||
from model.baselines.RGCN import RGCN | ||
from model.baselines.HGT import HGT | ||
from model.baselines.HAN import HAN, HAN_lp | ||
from model.modules import LinkPrediction_minibatch, LinkPrediction_fullbatch | ||
from utils import metapath2str, get_metapath_g, get_khop_g, load_base_config, load_model_config, load_data_nc, load_data_lp | ||
|
||
|
||
def main_nc(args): | ||
# load data | ||
g, in_dim_dict, out_dim, train_nid_dict, val_nid_dict, test_nid_dict = load_data_nc(args.dataset) | ||
print("Loaded data from dataset: {}".format(args.dataset)) | ||
|
||
# check cuda | ||
use_cuda = args.gpu >= 0 and th.cuda.is_available() | ||
if use_cuda: | ||
args.device = th.device('cuda', args.gpu) | ||
else: | ||
args.device = th.device('cpu') | ||
|
||
# create model + model-specific data preprocessing | ||
if args.model == "MECCH": | ||
if args.ablation: | ||
g = get_khop_g(g, args) | ||
model = khopMECCH( | ||
g, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
out_dim, | ||
args.n_layers, | ||
dropout=args.dropout, | ||
residual=args.residual, | ||
layer_norm=args.layer_norm | ||
) | ||
else: | ||
g, selected_metapaths = get_metapath_g(g, args) | ||
n_heads_list = [args.n_heads] * args.n_layers | ||
model = MECCH( | ||
g, | ||
selected_metapaths, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
out_dim, | ||
args.n_layers, | ||
n_heads_list, | ||
dropout=args.dropout, | ||
context_encoder=args.context_encoder, | ||
use_v=args.use_v, | ||
metapath_fusion=args.metapath_fusion, | ||
residual=args.residual, | ||
layer_norm=args.layer_norm | ||
) | ||
minibatch_flag = True | ||
elif args.model == "RGCN": | ||
assert args.n_layers >= 2 | ||
model = RGCN( | ||
g, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
out_dim, | ||
num_bases=-1, | ||
num_hidden_layers=args.n_layers - 2, | ||
dropout=args.dropout, | ||
use_self_loop=args.use_self_loop | ||
) | ||
minibatch_flag = False | ||
elif args.model == "HGT": | ||
model = HGT( | ||
g, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
out_dim, | ||
args.n_layers, | ||
args.n_heads | ||
) | ||
minibatch_flag = False | ||
elif args.model == "HAN": | ||
# assume the target node type has attributes | ||
assert args.hidden_dim % args.n_heads == 0 | ||
target_ntype = list(g.ndata["y"].keys())[0] | ||
n_heads_list = [args.n_heads] * args.n_layers | ||
model = HAN( | ||
args.metapaths, | ||
target_ntype, | ||
in_dim_dict[target_ntype], | ||
args.hidden_dim // args.n_heads, | ||
out_dim, | ||
num_heads=n_heads_list, | ||
dropout=args.dropout | ||
) | ||
minibatch_flag = False | ||
else: | ||
raise NotImplementedError | ||
|
||
state_dict = th.load(str(Path(args.save) / 'checkpoint.pt')) | ||
model.load_state_dict(state_dict) | ||
model.to(args.device) | ||
model.eval() | ||
g = g.to(args.device) | ||
|
||
if minibatch_flag: | ||
nid_dict = {ntype: g.nodes(ntype).to(args.device) for ntype in g.ntypes} | ||
# Use GPU-based neighborhood sampling if possible | ||
num_workers = 4 if args.device.type == "CPU" else 0 | ||
if args.n_neighbor_samples <= 0: | ||
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(args.n_layers) | ||
else: | ||
sampler = dgl.dataloading.MultiLayerNeighborSampler([{ | ||
etype: args.n_neighbor_samples for etype in g.canonical_etypes}] * args.n_layers) | ||
dataloader = dgl.dataloading.NodeDataLoader( | ||
g, | ||
nid_dict, | ||
sampler, | ||
batch_size=args.batch_size, | ||
shuffle=False, | ||
drop_last=False, | ||
num_workers=num_workers, | ||
device=args.device | ||
) | ||
with th.no_grad(): | ||
h_dict = {ntype: [] for ntype in nid_dict} | ||
for input_nodes, output_nodes, blocks in dataloader: | ||
input_features = blocks[0].srcdata["x"] | ||
_, h_dict_temp = model.get_embs(blocks, input_features) | ||
if not h_dict: | ||
h_dict = {k: [v] for k, v in h_dict_temp.items()} | ||
else: | ||
for k, v in h_dict_temp.items(): | ||
h_dict[k].append(v) | ||
h_dict = {k: th.cat(v, dim=0).cpu().numpy() for k, v in h_dict.items()} | ||
else: | ||
with th.no_grad(): | ||
_, h_dict = model.get_embs(g, g.ndata['x']) | ||
h_dict = {k: v.cpu().numpy() for k, v in h_dict.items()} | ||
|
||
# save embeddings | ||
np.savez(Path(args.save) / 'embeddings.npz', **h_dict) | ||
|
||
|
||
def main_lp(args): | ||
# load data | ||
(g_train, g_val, g_test), in_dim_dict, (train_eid_dict, val_eid_dict, test_eid_dict), (val_neg_uv, test_neg_uv) = load_data_lp(args.dataset) | ||
|
||
# check cuda | ||
use_cuda = args.gpu >= 0 and th.cuda.is_available() | ||
if use_cuda: | ||
args.device = th.device('cuda', args.gpu) | ||
else: | ||
args.device = th.device('cpu') | ||
|
||
target_etype = list(train_eid_dict.keys())[0] | ||
# create model + model-specific preprocessing | ||
if args.model == 'MECCH': | ||
if args.ablation: | ||
# Note: here we assume there is only one edge type between users and items | ||
train_eid_dict = {(g_train.to_canonical_etype(k)[0], '1-hop', g_train.to_canonical_etype(k)[2]): v for | ||
k, v in train_eid_dict.items()} | ||
val_eid_dict = {(g_val.to_canonical_etype(k)[0], '1-hop', g_val.to_canonical_etype(k)[2]): v for k, v | ||
in val_eid_dict.items()} | ||
test_eid_dict = {(g_test.to_canonical_etype(k)[0], '1-hop', g_test.to_canonical_etype(k)[2]): v for k, v | ||
in test_eid_dict.items()} | ||
target_etype = list(train_eid_dict.keys())[0] | ||
|
||
g_train = get_khop_g(g_train, args) | ||
g_val = get_khop_g(g_val, args) | ||
g_test = get_khop_g(g_test, args) | ||
model = khopMECCH( | ||
g_train, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
args.hidden_dim, | ||
args.n_layers, | ||
dropout=args.dropout, | ||
residual=args.residual, | ||
layer_norm=args.layer_norm | ||
) | ||
else: | ||
train_eid_dict = {metapath2str([g_train.to_canonical_etype(k)]): v for k, v in train_eid_dict.items()} | ||
val_eid_dict = {metapath2str([g_val.to_canonical_etype(k)]): v for k, v in val_eid_dict.items()} | ||
test_eid_dict = {metapath2str([g_test.to_canonical_etype(k)]): v for k, v in test_eid_dict.items()} | ||
target_etype = list(train_eid_dict.keys())[0] | ||
|
||
# cache metapath_g | ||
load_path = Path('./data') / args.dataset / 'metapath_g-max_mp={}'.format(args.max_mp_length) | ||
if load_path.is_dir(): | ||
g_list, _ = dgl.load_graphs(str(load_path / 'graph.bin')) | ||
g_train, g_val, g_test = g_list | ||
with open(load_path / 'selected_metapaths.pkl', 'rb') as in_file: | ||
selected_metapaths = pickle.load(in_file) | ||
else: | ||
g_train, _ = get_metapath_g(g_train, args) | ||
g_val, _ = get_metapath_g(g_val, args) | ||
g_test, selected_metapaths = get_metapath_g(g_test, args) | ||
load_path.mkdir() | ||
dgl.save_graphs(str(load_path / 'graph.bin'), [g_train, g_val, g_test]) | ||
with open(load_path / 'selected_metapaths.pkl', 'wb') as out_file: | ||
pickle.dump(selected_metapaths, out_file) | ||
|
||
n_heads_list = [args.n_heads] * args.n_layers | ||
model = MECCH( | ||
g_train, | ||
selected_metapaths, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
args.hidden_dim, | ||
args.n_layers, | ||
n_heads_list, | ||
dropout=args.dropout, | ||
context_encoder=args.context_encoder, | ||
use_v=args.use_v, | ||
metapath_fusion=args.metapath_fusion, | ||
residual=args.residual, | ||
layer_norm=args.layer_norm | ||
) | ||
model_lp = LinkPrediction_minibatch(model, args.hidden_dim, target_etype) | ||
minibatch_flag = True | ||
elif args.model == 'RGCN': | ||
assert args.n_layers >= 2 | ||
model = RGCN( | ||
g_train, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
args.hidden_dim, | ||
num_bases=-1, | ||
num_hidden_layers=args.n_layers - 2, | ||
dropout=args.dropout, | ||
use_self_loop=args.use_self_loop | ||
) | ||
if hasattr(args, 'batch_size'): | ||
model_lp = LinkPrediction_minibatch(model, args.hidden_dim, target_etype) | ||
minibatch_flag = True | ||
else: | ||
srctype, _, dsttype = g_train.to_canonical_etype(target_etype) | ||
model_lp = LinkPrediction_fullbatch(model, args.hidden_dim, srctype, dsttype) | ||
minibatch_flag = False | ||
elif args.model == 'HGT': | ||
model = HGT( | ||
g_train, | ||
in_dim_dict, | ||
args.hidden_dim, | ||
args.hidden_dim, | ||
args.n_layers, | ||
args.n_heads | ||
) | ||
if hasattr(args, 'batch_size'): | ||
model_lp = LinkPrediction_minibatch(model, args.hidden_dim, target_etype) | ||
minibatch_flag = True | ||
else: | ||
srctype, _, dsttype = g_train.to_canonical_etype(target_etype) | ||
model_lp = LinkPrediction_fullbatch(model, args.hidden_dim, srctype, dsttype) | ||
minibatch_flag = False | ||
elif args.model == 'HAN': | ||
# assume the target node type has attributes | ||
# Note: this HAN version from DGL conducts full-batch training with online metapath_reachable_graph, | ||
# preprocessing needed for the PubMed dataset | ||
assert args.hidden_dim % args.n_heads == 0 | ||
n_heads_list = [args.n_heads] * args.n_layers | ||
model_lp = HAN_lp( | ||
g_train, | ||
args.metapaths_u, | ||
args.metapaths_u[0][0][0], | ||
-1, | ||
args.metapaths_v, | ||
args.metapaths_v[0][0][0], | ||
-1, | ||
args.hidden_dim // args.n_heads, | ||
args.hidden_dim, | ||
num_heads=n_heads_list, | ||
dropout=args.dropout | ||
) | ||
minibatch_flag = False | ||
else: | ||
raise NotImplementedError | ||
|
||
state_dict = th.load(str(Path(args.save) / 'checkpoint.pt')) | ||
model_lp.load_state_dict(state_dict) | ||
model_lp.to(args.device) | ||
model_lp.eval() | ||
g_test = g_test.to(args.device) | ||
|
||
if args.model == 'HAN': | ||
# should we use g_val or g_test as the input graph? | ||
with th.no_grad(): | ||
# set initial node embeddings | ||
if hasattr(model_lp, 'feats_u'): | ||
x_dict_u = {model_lp.target_ntype_u: model_lp.feats_u} | ||
else: | ||
x_dict_u = {model_lp.target_ntype_u: g_test.ndata['x'][model_lp.target_ntype_u]} | ||
if hasattr(model_lp, 'feats_v'): | ||
x_dict_v = {model_lp.target_ntype_v: model_lp.feats_v} | ||
else: | ||
x_dict_v = {model_lp.target_ntype_v: g_test.ndata['x'][model_lp.target_ntype_v]} | ||
|
||
h_u = model_lp.model_u(g_test, x_dict_u)[model_lp.target_ntype_u] | ||
h_v = model_lp.model_v(g_test, x_dict_v)[model_lp.target_ntype_v] | ||
h_dict = {model_lp.target_ntype_u: h_u.cpu().numpy(), model_lp.target_ntype_v: h_v.cpu().numpy()} | ||
else: | ||
if minibatch_flag: | ||
nid_dict = {ntype: g_test.nodes(ntype).to(args.device) for ntype in g_test.ntypes} | ||
# Use GPU-based neighborhood sampling if possible | ||
num_workers = 4 if args.device.type == "CPU" else 0 | ||
if args.n_neighbor_samples <= 0: | ||
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(args.n_layers) | ||
else: | ||
sampler = dgl.dataloading.MultiLayerNeighborSampler([{ | ||
etype: args.n_neighbor_samples for etype in g_test.canonical_etypes}] * args.n_layers) | ||
dataloader = dgl.dataloading.NodeDataLoader( | ||
g_test, | ||
nid_dict, | ||
sampler, | ||
batch_size=args.batch_size, | ||
shuffle=False, | ||
drop_last=False, | ||
num_workers=num_workers, | ||
device=args.device | ||
) | ||
with th.no_grad(): | ||
h_dict = {ntype: [] for ntype in nid_dict} | ||
for input_nodes, output_nodes, blocks in dataloader: | ||
input_features = blocks[0].srcdata["x"] | ||
h_dict_temp = model_lp.emb_model(blocks, input_features) | ||
if not h_dict: | ||
h_dict = {k: [v] for k, v in h_dict_temp.items()} | ||
else: | ||
for k, v in h_dict_temp.items(): | ||
h_dict[k].append(v) | ||
h_dict = {k: th.cat(v, dim=0).cpu().numpy() for k, v in h_dict.items()} | ||
else: | ||
with th.no_grad(): | ||
h_dict = model_lp.emb_model(g_test, g_test.ndata['x']) | ||
h_dict = {k: v.cpu().numpy() for k, v in h_dict.items()} | ||
|
||
# save embeddings | ||
np.savez(Path(args.save) / 'embeddings.npz', **h_dict) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser("My HGNNs") | ||
parser.add_argument('--model', '-m', type=str, required=True, help='name of model') | ||
parser.add_argument('--dataset', '-d', type=str, required=True, help='name of dataset') | ||
parser.add_argument('--task', '-t', type=str, default='node_classification', help='type of task') | ||
parser.add_argument("--gpu", '-g', type=int, default=-1, help="which gpu to use, specify -1 to use CPU") | ||
parser.add_argument('--save', '-s', type=str, required=True, help='which save dir to use') | ||
|
||
args = parser.parse_args() | ||
configs = load_base_config() | ||
configs.update(load_model_config(Path(args.save) / '{}.json'.format(args.model), args.dataset)) | ||
configs.update(vars(args)) | ||
args = argparse.Namespace(**configs) | ||
print(args) | ||
|
||
if args.task == 'node_classification': | ||
main_nc(args) | ||
elif args.task == 'link_prediction': | ||
main_lp(args) | ||
else: | ||
raise NotImplementedError |