Skip to content
forked from SSL92/hyperIQA

Source code for the CVPR'20 paper "Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network"

License

Notifications You must be signed in to change notification settings

colossyan/hyperIQA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperIQA

This is the source code for the CVPR'20 paper "Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network".

Dependencies

  • Python 3.6+
  • PyTorch 0.4+
  • TorchVision
  • scipy

(optional for loading specific IQA Datasets)

  • csv (KonIQ-10k Dataset)
  • openpyxl (BID Dataset)

Usages

Testing a single image

Predicting image quality with our model trained on the Koniq-10k Dataset.

To run the demo, please download the pre-trained model at Google drive or Baidu cloud (password: 1ty8), put it in 'pretrained' folder, then run:

python demo.py

You will get a quality score ranging from 0-100, and a higher value indicates better image quality.

Training & Testing on IQA databases

Training and testing our model on the LIVE Challenge Dataset.

python train_test_IQA.py

Some available options:

  • --dataset: Training and testing dataset, support datasets: livec | koniq-10k | bid | live | csiq | tid2013.
  • --train_patch_num: Sampled image patch number per training image.
  • --test_patch_num: Sampled image patch number per testing image.
  • --batch_size: Batch size.

When training or testing on CSIQ dataset, please put 'csiq_label.txt' in your own CSIQ folder.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{Su_2020_CVPR,
author = {Su, Shaolin and Yan, Qingsen and Zhu, Yu and Zhang, Cheng and Ge, Xin and Sun, Jinqiu and Zhang, Yanning},
title = {Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

About

Source code for the CVPR'20 paper "Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%