Skip to content

Computational condensed matter research code written in C++. Primary applications relate to low-dimensional carbon nanomaterials, phonons, and structural optimization.

Notifications You must be signed in to change notification settings

colin-daniels/sp2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sp2

Computational physics research application dealing mainly with carbon-based structures (e.g. graphene, carbon nanotubes) developed at the ICMP research group by Colin Daniels and Michael Lamparski. A web interface to some of the Raman functionality is available here.

Disclaimer: sp2 is very much research code, and has hardly followed best practices in terms of development. As such, some features may not work and it is unfortunately very possible that the exact code used for a particular publication may not even be present in the git commit history. The code itself is reproduced here for reference, and in particular the Raman functionality has been superceded by rsp2.

Installation

There are only a few dependencies, the primary ones being MPI, boost, python 3, and phonopy. Look at the GitHub workflow file if totally lost, since it does build fine in that environment.

Related Publications

Below is a list of publications in which this software was utilized at least in part.

  • J. Overbeck, G. B. Barin, C. Daniels, M. L. Perrin, O. Braun, Q. Sun, R. Darawish, M. De Luca, X.-Y. Wang, T. Dumslaff, A. Narita, K. Müllen, P. Ruffieux, V. Meunier, R. Fasel, and M. Calame, A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons, ACS Nano 10.1021/acsnano.9b05817 (2019).
  • O. Gröning, S. Wang, X. Yao, C. A. Pignedoli, G. B. Barin, C. Daniels, A. Cupo, V. Meunier, X. Feng, A. Narita, K. Müllen, P. Ruffieux, and R. Fasel, Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons, Nature 560, 209 10.1038/s41586-018-0375-9 (2018).
  • J. R. Owens, C. Daniels, A. Nicolaï, H. Terrones, and V. Meunier, Structural, Energetic, and Electronic Properties of Gyroidal Graphene Nanostructures, Carbon 96, 998 10.1016/j.carbon.2015.10.042 (2016).
  • Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons, ACS Nano 9, 3510 10.1021/nn507452g (2015).
  • A. Nicolaï, J. Monti, C. Daniels, and V. Meunier, Electrolyte Diffusion in Gyroidal Nanoporous Carbon, J. Phys. Chem. C 119, 2896 10.1021/jp511919d (2015).
  • C. Daniels, A. Horning, A. Phillips, D. V. P. Massote, L. Liang, Z. Bullard, B. G. Sumpter, and V. Meunier, Elastic, Plastic, and Fracture Mechanisms in Graphene Materials, J. Phys.: Condens. Matter 27, 373002 10.1088/0953-8984/27/37/373002 (2015).
  • C. Daniels, Z. Bullard, E. C. Girão, and V. Meunier, Emergent Magnetism in Irradiated Graphene Nanostructures, Carbon 78, 196 10.1016/j.carbon.2014.06.072 (2014).

References

sp2 would not be possible without building upon the following works:

  • A. N. Kolmogorov and V. H. Crespi, Registry-Dependent Interlayer Potential for Graphitic Systems, Phys. Rev. B 71, 235415 10.1103/PhysRevB.71.235415 (2005).
  • A. Togo and I. Tanaka, First Principles Phonon Calculations in Materials Science, Scripta Materialia 108, 1 10.1016/j.scriptamat.2015.07.021 (2015).
  • D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons, J. Phys.: Condens. Matter 14, 783 10.1088/0953-8984/14/4/312 (2002).
  • E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, Structural Relaxation Made Simple, Phys. Rev. Lett. 97, 170201 10.1103/PhysRevLett.97.170201 (2006).
  • N. Andrei, Conjugate gradient algorithms for molecular formation under pairwise potential minimization, in Mathematical Modeling of Environmental and Life Sciences Problems camo.ici.ro/neculai/potential.pdf (Constanta, Romania, 2008).
  • R. Saito, M. Furukawa, G. Dresselhaus, and M. S. Dresselhaus, Raman Spectra of Graphene Ribbons, J. Phys.: Condens. Matter 22, 334203 10.1088/0953-8984/22/33/334203 (2010).
  • S. Guha, J. Menéndez, J. B. Page, and G. B. Adams, Empirical Bond Polarizability Model for Fullerenes, Phys. Rev. B 53, 13106 10.1103/PhysRevB.53.13106 (1996).
  • S. J. Stuart, A. B. Tutein, and J. A. Harrison, A Reactive Potential for Hydrocarbons with Intermolecular Interactions, The Journal of Chemical Physics 112, 6472 10.1063/1.481208 (2000).
  • S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics 117, 1 10.1006/jcph.1995.1039 (1995).
  • Z. Bullard and V. Meunier, Dynamical Properties of Carbon Nanotube Welding into X Junctions, Phys. Rev. B 88, 035422 10.1103/PhysRevB.88.035422 (2013).
  • Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, Adaptive Particle Swarm Optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 1362 10.1109/TSMCB.2009.2015956 (2009).

About

Computational condensed matter research code written in C++. Primary applications relate to low-dimensional carbon nanomaterials, phonons, and structural optimization.

Topics

Resources

Stars

Watchers

Forks

Languages