generated from cavalleria/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e90344c
commit 9eaf9e3
Showing
22 changed files
with
1,391 additions
and
499 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -110,3 +110,4 @@ datasets/ | |
.vscode/ | ||
.idea/ | ||
__MACOSX/ | ||
.history/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,12 @@ | ||
from .base_data_loader import * | ||
from .base_model import * | ||
from .base_trainer import * | ||
|
||
|
||
#------------------------------------------------------------------------------ | ||
# Bag of Inferences | ||
#------------------------------------------------------------------------------ | ||
from base.base_inference import ( | ||
BaseInference, | ||
VideoInference | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
#------------------------------------------------------------------------------ | ||
# Libraries | ||
#------------------------------------------------------------------------------ | ||
import cv2, torch | ||
import numpy as np | ||
from time import time | ||
from torch.nn import functional as F | ||
|
||
|
||
#------------------------------------------------------------------------------ | ||
# BaseInference | ||
#------------------------------------------------------------------------------ | ||
class BaseInference(object): | ||
def __init__(self, model, color_f=[255,0,0], color_b=[0,0,255], kernel_sz=25, sigma=0, background_path=None): | ||
self.model = model | ||
self.color_f = color_f | ||
self.color_b = color_b | ||
self.kernel_sz = kernel_sz | ||
self.sigma = sigma | ||
self.background_path = background_path | ||
if background_path is not None: | ||
self.background = cv2.imread(background_path)[...,::-1] | ||
self.background = self.background.astype(np.float32) | ||
|
||
|
||
def load_image(self): | ||
raise NotImplementedError | ||
|
||
|
||
def preprocess(self, image, *args): | ||
raise NotImplementedError | ||
|
||
|
||
def predict(self, X): | ||
raise NotImplementedError | ||
|
||
|
||
def draw_matting(self, image, mask): | ||
""" | ||
image (np.uint8) shape (H,W,3) | ||
mask (np.float32) range from 0 to 1, shape (H,W) | ||
""" | ||
mask = 255*(1.0-mask) | ||
mask = np.expand_dims(mask, axis=2) | ||
mask = np.tile(mask, (1,1,3)) | ||
mask = mask.astype(np.uint8) | ||
image_alpha = cv2.add(image, mask) | ||
return image_alpha | ||
|
||
|
||
def draw_transperency(self, image, mask): | ||
""" | ||
image (np.uint8) shape (H,W,3) | ||
mask (np.float32) range from 0 to 1, shape (H,W) | ||
""" | ||
mask = mask.round() | ||
alpha = np.zeros_like(image, dtype=np.uint8) | ||
alpha[mask==1, :] = self.color_f | ||
alpha[mask==0, :] = self.color_b | ||
image_alpha = cv2.add(image, alpha) | ||
return image_alpha | ||
|
||
|
||
def draw_background(self, image, mask): | ||
""" | ||
image (np.uint8) shape (H,W,3) | ||
mask (np.float32) range from 0 to 1, shape (H,W) | ||
""" | ||
image = image.astype(np.float32) | ||
mask_filtered = cv2.GaussianBlur(mask, (self.kernel_sz, self.kernel_sz), self.sigma) | ||
mask_filtered = np.expand_dims(mask_filtered, axis=2) | ||
mask_filtered = np.tile(mask_filtered, (1,1,3)) | ||
|
||
image_alpha = image*mask_filtered + self.background*(1-mask_filtered) | ||
return image_alpha.astype(np.uint8) | ||
|
||
|
||
#------------------------------------------------------------------------------ | ||
# VideoInference | ||
#------------------------------------------------------------------------------ | ||
class VideoInference(BaseInference): | ||
def __init__(self, model, video_path, input_size, use_cuda=True, draw_mode='matting', | ||
color_f=[255,0,0], color_b=[0,0,255], kernel_sz=25, sigma=0, background_path=None): | ||
|
||
# Initialize | ||
super(VideoInference, self).__init__(model, color_f, color_b, kernel_sz, sigma, background_path) | ||
self.input_size = input_size | ||
self.use_cuda = use_cuda | ||
self.draw_mode = draw_mode | ||
if draw_mode=='matting': | ||
self.draw_func = self.draw_matting | ||
elif draw_mode=='transperency': | ||
self.draw_func = self.draw_transperency | ||
elif draw_mode=='background': | ||
self.draw_func = self.draw_background | ||
else: | ||
raise NotImplementedError | ||
|
||
# Preprocess | ||
self.mean = np.array([0.485,0.456,0.406])[None,None,:] | ||
self.std = np.array([0.229,0.224,0.225])[None,None,:] | ||
|
||
# Read video | ||
self.video_path = video_path | ||
self.cap = cv2.VideoCapture(video_path) | ||
_, frame = self.cap.read() | ||
self.H, self.W = frame.shape[:2] | ||
|
||
|
||
def load_image(self): | ||
_, frame = self.cap.read() | ||
image = frame[...,::-1] | ||
return image | ||
|
||
|
||
def preprocess(self, image): | ||
image = cv2.resize(image, (self.input_size,self.input_size), interpolation=cv2.INTER_LINEAR) | ||
image = image.astype(np.float32) / 255.0 | ||
image = (image - self.mean) / self.std | ||
X = np.transpose(image, axes=(2, 0, 1)) | ||
X = np.expand_dims(X, axis=0) | ||
X = torch.tensor(X, dtype=torch.float32) | ||
return X | ||
|
||
|
||
def predict(self, X): | ||
with torch.no_grad(): | ||
if self.use_cuda: | ||
mask = self.model(X.cuda()) | ||
mask = F.interpolate(mask, size=(self.H, self.W), mode='bilinear', align_corners=True) | ||
mask = F.softmax(mask, dim=1) | ||
mask = mask[0,1,...].cpu().numpy() | ||
else: | ||
mask = self.model(X) | ||
mask = F.interpolate(mask, size=(self.H, self.W), mode='bilinear', align_corners=True) | ||
mask = F.softmax(mask, dim=1) | ||
mask = mask[0,1,...].numpy() | ||
return mask | ||
|
||
|
||
def run(self): | ||
while(True): | ||
# Read frame from camera | ||
start_time = time() | ||
image = self.load_image() | ||
read_cam_time = time() | ||
|
||
# Preprocess | ||
X = self.preprocess(image) | ||
preproc_time = time() | ||
|
||
# Predict | ||
mask = self.predict(X) | ||
predict_time = time() | ||
|
||
# Draw result | ||
image_alpha = self.draw_func(image, mask) | ||
draw_time = time() | ||
|
||
# Wait for interupt | ||
cv2.imshow('webcam', image_alpha[..., ::-1]) | ||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
|
||
# Print runtime | ||
read = read_cam_time-start_time | ||
preproc = preproc_time-read_cam_time | ||
pred = predict_time-preproc_time | ||
draw = draw_time-predict_time | ||
total = read + preproc + pred + draw | ||
fps = 1 / total | ||
print("read: %.3f [s]; preproc: %.3f [s]; pred: %.3f [s]; draw: %.3f [s]; total: %.3f [s]; fps: %.2f [Hz]" % | ||
(read, preproc, pred, draw, total, fps)) |
Oops, something went wrong.