title | author | date | output | vignette |
---|---|---|---|---|
Plot for distribution of statistic and p-value |
Keon-Woong Moon |
2018-04-18 |
rmarkdown::html_vignette |
%\VignetteIndexEntry{plot.htest} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}
|
To understand the concept of p value is very important. To teach the the distribution of common statistic(
https://cardiomoon.github.io/webr/index.html
You can install this package form the github. Currently, package webr
is under construction and consists of only one function - plot.htest().
#install.packages("devtools")
devtools::install_github("cardiomoon/webr")
The plot.htest() function is a S3 method for class "htest". Currently, this function covers Welch Two Sample t-test, Pearson's Chi-squared test, Two Sample t-test, One Sample t-test, Paired t-test and F test to compare two variances.
You can show the distribution of chi-squre statistic and p-value.
require(moonBook)
require(webr)
# chi-squared test
x=chisq.test(table(acs$sex,acs$DM))
x
Pearson's Chi-squared test with Yates' continuity correction
data: table(acs$sex, acs$DM)
X-squared = 3.1296, df = 1, p-value = 0.07688
plot(x)
You can show the distribution of t-statistic and p-value in one sample t-test.
t.test(acs$age,mu=63)
One Sample t-test
data: acs$age
t = 0.77978, df = 856, p-value = 0.4357
alternative hypothesis: true mean is not equal to 63
95 percent confidence interval:
62.52736 64.09574
sample estimates:
mean of x
63.31155
plot(t.test(acs$age,mu=63))
Before performing a t-test, you have to compare two variances.
x=var.test(age~DM,data=acs)
x
F test to compare two variances
data: age by DM
F = 1.2383, num df = 552, denom df = 303, p-value = 0.0376
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.012416 1.505776
sample estimates:
ratio of variances
1.238288
plot(x)
Based on the result of var.test(), you can perform t.test with default option(var.equal=FALSE).
x=t.test(age~DM,data=acs)
x
Welch Two Sample t-test
data: age by DM
t = 0.58982, df = 682.36, p-value = 0.5555
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.112568 2.068014
sample estimates:
mean in group No mean in group Yes
63.48101 63.00329
plot(x)
To compare means of body-mass index between male and female patients, perform F test first.
var.test(BMI~sex,data=acs)
F test to compare two variances
data: BMI by sex
F = 1.2078, num df = 254, denom df = 508, p-value = 0.07756
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.9794315 1.5008098
sample estimates:
ratio of variances
1.207759
plot(var.test(BMI~sex,data=acs))
x=t.test(BMI~sex,data=acs,var.equal=TRUE)
x
Two Sample t-test
data: BMI by sex
t = -0.50823, df = 762, p-value = 0.6114
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6348532 0.3737344
sample estimates:
mean in group Female mean in group Male
24.19492 24.32548
plot(x)
You can show the distribution of t-statistic and p-value in paired t-test.
x=t.test(iris$Sepal.Width,iris$Petal.Width,paired=TRUE)
plot(x)
You can change the options of t.test.
x=t.test(BMI~sex, data=acs,conf.level=0.99,alternative="greater",var.equal=TRUE)
plot(x)