-
Notifications
You must be signed in to change notification settings - Fork 0
Complex Number Commands
-
Complex Number Commands
- Complex to Real Rectangular Form conversion
- Complex to Real Polar Form conversion
- Real Rectangular Form to Complex conversion
- Real Polar Form to Complex conversion
- Real Rectangular to Real Polar conversion
- Real Polar to Real Rectangular conversion
- Complex conjugate of a complex number
- Complex real component
- Complex imaginary component
- Complex absolute value
- Complex angle argument
- Change sign of a complex number
- Sign Function for a complex number
Source: Jeff O. (122519)
Source: HP 49g+ Advanced User's Reference Manual HP part number F2228-90010
Decomposition of a complex number into its real and imaginary components, with
those values placed in the stack X and stack Y registers, respectively (C→R
).
Example:
2 + 3𝒾 = 3.00, 2.00
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
![]() ABS
|
Mag | |
2 |
![]() LASTx ![]() ARG
|
Ang | ||
3 |
COS ![]() LASTx SIN
|
|||
4 |
R↓ R↓ x<>y R↓
|
Bring z to X | ||
5 | × |
b | Imaginary part | |
6 |
x<>y ![]() LASTx ×
|
a | Real part |
; XEQ 2 ENTER
LBL Y
ABS
CLx
eqn 'ABS(LASTx)*SIN(ARG(LASTx))'
eqn 'ABS(LASTx)*COS(ARG(LASTx))'
RTN
Decomposition of a complex number into the magnitude and angle of its polar
form, with those values placed in the stack X and stack Y registers,
respectively (C→P
).
Example:
1 + 1𝒾 = 45.00, 1.41
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | x |
![]() ARG
|
Ang | Angle |
2 |
![]() LASTx ![]() ABS
|
Mag | Magnitude |
; XEQ 3 ENTER
LBL Z
ARG
LASTx
ABS
RTN
Formation of a complex number in stack x from real and imaginary components
initially in the stack X and stack Y registers, respectively (R→C
).
Example:
-2, -7 = -7.00 - 2.00𝒾
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | b |
ENTER ![]() ×
|
||
2 | a | + |
u+𝒾v |
Source: Barry More
; XEQ 4 ENTER
LBL U
ABS
Rv
Rv
eqn 'LASTx+i*REGT'
eqn 'REGZ'
Rv
RTN
Formation of a complex number in stack x from a magnitude and angle initially in
the stack X and stack Y registers, respectively (P→C
).
Example:
30, 2 = 1.73 + 1.00𝒾
Note: Enter θ in degrees
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 |
MODE 1'DEG
|
Degree mode | ||
2 | Ang |
![]() →RAD ![]() × ![]() |
||
3 | e˟ |
|||
4 | Mag | × |
u+𝒾v |
Source: Barry More
; XEQ 5 ENTER
LBL V
ABS
Rv
Rv
eqn 'LASTx*COS(REGT)+i*LASTx*SIN(REGT)'
eqn 'REGZ'
Rv
RTN
Conversion of a rectangular representation of complex number in stack X (Real)
and stack Y (imaginary) to a polar representation in stack X (magnitude) and
stack Y (angle) (R→P
).
Example:
3, 2 = 2.00 + 3.00𝒾 = 3.61 e56.31 = 56.31, 3.61
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | b |
ENTER ![]() ×
|
||
2 | a | + |
||
3 |
![]() ARG
|
Ang | Angle | |
4 |
![]() LASTx ![]() ABS
|
Mag | Magnitude |
; XEQ 6 ENTER
LBL W
ABS
CLx
LASTx
Rv
Rv
eqn 'REGZ+i*REGT'
ENTER
Rv
Rv
eqn 'ARG(REGT)'
eqn 'ABS(REGT)'
RTN
Conversion of a polar representation of complex number in stack X (magnitude)
and stack Y (angle) to a rectangular representation in stack X (real) and stack
Y (imaginary) (P→R
).
Example:
30, 2 = 2.00 e30.00 = 1.73 + 1.00𝒾 = 1.00, 1.73
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | Ang | ENTER |
||
2 | Mag |
x<>y COS ![]() LASTx SIN
|
||
3 |
R↓ R↓ x<>y R↓
|
Bring z to X | ||
4 | × |
b | Imaginary part | |
5 |
x<>y ![]() LASTx ×
|
a | Real part |
; XEQ 7 ENTER
LBL R
ABS
Rv
Rv
eqn 'LASTx*COS(REGT)+i*LASTx*SIN(REGT)'
ENTER
Rv
Rv
eqn 'ABS(REGZ)*SIN(ARG(REGZ))'
eqn 'ABS(REGT)*COS(ARG(REGT))'
RTN
Conversion of a complex number in stack X to its complex conjugate in stack X
(CONJ
).
Example:
2 + 3𝒾 = 2.00 - 3.00𝒾
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
ENTER ![]() ABS ![]() x²
|
||
2 |
x<>y ÷
|
u+𝒾v |
; XEQ 8 ENTER
LBL S
ABS
CLx
eqn 'SQ(ABS(LASTx))/LASTx'
RTN
Return the real part of a complex argument (RE
).
Example:
4 - 3𝒾 = 4.00
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
ENTER ![]() ARG COS x<>y
|
||
2 |
![]() ABS ×
|
a | Real part |
Source: Antonio Maschio (140944)
Return the imaginary part of a complex argument (IM
).
Example:
4 - 3𝒾 = -3.00
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
ENTER ![]() ARG SIN x<>y
|
||
2 |
![]() ABS ×
|
b | Imaginary part |
Source: Antonio Maschio (140944)
Formula:
|a + 𝒾b| = √(a2 + b2)
Example:
|3 + 4𝒾| = 5.00
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
![]() ABS
|
Mag | Magnitude |
Returns the (real) polar angle of a complex number a + 𝒾b (ARG
).
Example:
1 + 1𝒾 = 45°
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
![]() ARG
|
Ang | Angle |
Changes the sign or of a complex number (NEG
).
Example:
2 - 1𝒾 = -2.00 + 1.00𝒾
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b | +/- |
u+𝒾v |
Return the unit vector in the direction of a complex number argument (SIGN
).
Formular:
SIGN(a + 𝒾b) = a⁄√(a2 + b2) + 𝒾b⁄√(a2 + b2)
Example:
3 + 4𝒾 = 0.60 + 0.80𝒾
LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
---|---|---|---|---|
1 | a+𝒾b |
ENTER ![]() ABS ÷
|
u+𝒾v |
- HP-35s Startpage
- Assembler
- Emulator
- Applications Book (en|de)
- Introduction
- Machine Related Operations
- Number Theory and Algebra
- Geometry and Trigonometry
- Miscellany
- Appendix