forked from opencv/opencv_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
C++ Demo - Human Segmentation (opencv#243)
* add human segmentation c++ demo * removed debug print and update README * inverted colors for consistency * adjusted blending weight for visualization
- Loading branch information
Showing
4 changed files
with
279 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
cmake_minimum_required(VERSION 3.24) | ||
set(CMAKE_CXX_STANDARD 11) | ||
set(project_name "opencv_zoo_human_segmentation") | ||
|
||
PROJECT (${project_name}) | ||
|
||
set(OPENCV_VERSION "4.9.0") | ||
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation") | ||
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH}) | ||
# Find OpenCV, you may need to set OpenCV_DIR variable | ||
# to the absolute path to the directory containing OpenCVConfig.cmake file | ||
# via the command line or GUI | ||
|
||
file(GLOB SourceFile | ||
"demo.cpp") | ||
# If the package has been found, several variables will | ||
# be set, you can find the full list with descriptions | ||
# in the OpenCVConfig.cmake file. | ||
# Print some message showing some of them | ||
message(STATUS "OpenCV library status:") | ||
message(STATUS " config: ${OpenCV_DIR}") | ||
message(STATUS " version: ${OpenCV_VERSION}") | ||
message(STATUS " libraries: ${OpenCV_LIBS}") | ||
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}") | ||
|
||
# Declare the executable target built from your sources | ||
add_executable(${project_name} ${SourceFile}) | ||
|
||
# Link your application with OpenCV libraries | ||
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS}) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
#include "opencv2/opencv.hpp" | ||
|
||
#include <map> | ||
#include <vector> | ||
#include <string> | ||
#include <iostream> | ||
|
||
using namespace std; | ||
using namespace cv; | ||
using namespace dnn; | ||
|
||
std::vector<std::pair<int, int>> backend_target_pairs = { | ||
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, | ||
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, | ||
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, | ||
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, | ||
{DNN_BACKEND_CANN, DNN_TARGET_NPU} | ||
}; | ||
|
||
class PPHS | ||
{ | ||
private: | ||
Net model; | ||
string modelPath; | ||
|
||
Scalar imageMean = Scalar(0.5,0.5,0.5); | ||
Scalar imageStd = Scalar(0.5,0.5,0.5); | ||
Size modelInputSize = Size(192, 192); | ||
Size currentSize; | ||
|
||
const String inputNames = "x"; | ||
const String outputNames = "save_infer_model/scale_0.tmp_1"; | ||
|
||
int backend_id; | ||
int target_id; | ||
|
||
public: | ||
PPHS(const string& modelPath, | ||
int backend_id = 0, | ||
int target_id = 0) | ||
: modelPath(modelPath), backend_id(backend_id), target_id(target_id) | ||
{ | ||
this->model = readNet(modelPath); | ||
this->model.setPreferableBackend(backend_id); | ||
this->model.setPreferableTarget(target_id); | ||
} | ||
|
||
Mat preprocess(const Mat image) | ||
{ | ||
this->currentSize = image.size(); | ||
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type()); | ||
resize(image, preprocessed, this->modelInputSize); | ||
|
||
// image normalization | ||
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0); | ||
preprocessed -= imageMean; | ||
preprocessed /= imageStd; | ||
|
||
return blobFromImage(preprocessed);; | ||
} | ||
|
||
Mat infer(const Mat image) | ||
{ | ||
Mat inputBlob = preprocess(image); | ||
|
||
this->model.setInput(inputBlob, this->inputNames); | ||
Mat outputBlob = this->model.forward(this->outputNames); | ||
|
||
return postprocess(outputBlob); | ||
} | ||
|
||
Mat postprocess(Mat image) | ||
{ | ||
reduceArgMax(image,image,1); | ||
image = image.reshape(1,image.size[2]); | ||
image.convertTo(image, CV_32F); | ||
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR); | ||
image.convertTo(image, CV_8U); | ||
|
||
return image; | ||
} | ||
|
||
}; | ||
|
||
|
||
vector<uint8_t> getColorMapList(int num_classes) { | ||
num_classes += 1; | ||
|
||
vector<uint8_t> cm(num_classes*3, 0); | ||
|
||
int lab, j; | ||
|
||
for (int i = 0; i < num_classes; ++i) { | ||
lab = i; | ||
j = 0; | ||
|
||
while(lab){ | ||
cm[i] |= (((lab >> 0) & 1) << (7 - j)); | ||
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j)); | ||
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j)); | ||
++j; | ||
lab >>= 3; | ||
} | ||
|
||
} | ||
|
||
cm.erase(cm.begin(), cm.begin()+3); | ||
|
||
return cm; | ||
}; | ||
|
||
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4) | ||
{ | ||
const Scalar& text_color = Scalar(0, 255, 0); | ||
Mat output_image = image.clone(); | ||
|
||
vector<uint8_t> color_map = getColorMapList(256); | ||
|
||
Mat cmm(color_map); | ||
|
||
cmm = cmm.reshape(1,{3,256}); | ||
|
||
if (fps >= 0) | ||
{ | ||
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); | ||
} | ||
|
||
Mat c1, c2, c3; | ||
|
||
LUT(result, cmm.row(0), c1); | ||
LUT(result, cmm.row(1), c2); | ||
LUT(result, cmm.row(2), c3); | ||
|
||
Mat pseudo_img; | ||
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img); | ||
|
||
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image); | ||
|
||
return output_image; | ||
}; | ||
|
||
string keys = | ||
"{ help h | | Print help message. }" | ||
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }" | ||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" | ||
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" | ||
"0: (default) OpenCV implementation + CPU,\n" | ||
"1: CUDA + GPU (CUDA),\n" | ||
"2: CUDA + GPU (CUDA FP16),\n" | ||
"3: TIM-VX + NPU,\n" | ||
"4: CANN + NPU}" | ||
"{ save s | false | Specify to save results.}" | ||
"{ vis v | true | Specify to open a window for result visualization.}" | ||
; | ||
|
||
|
||
int main(int argc, char** argv) | ||
{ | ||
CommandLineParser parser(argc, argv, keys); | ||
|
||
parser.about("Human Segmentation"); | ||
if (parser.has("help")) | ||
{ | ||
parser.printMessage(); | ||
return 0; | ||
} | ||
|
||
string modelPath = parser.get<string>("model"); | ||
string inputPath = parser.get<string>("input"); | ||
uint8_t backendTarget = parser.get<uint8_t>("backend_target"); | ||
bool saveFlag = parser.get<bool>("save"); | ||
bool visFlag = parser.get<bool>("vis"); | ||
|
||
if (modelPath.empty()) | ||
CV_Error(Error::StsError, "Model file " + modelPath + " not found"); | ||
|
||
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); | ||
|
||
VideoCapture cap; | ||
if (!inputPath.empty()) | ||
cap.open(samples::findFile(inputPath)); | ||
else | ||
cap.open(0); | ||
|
||
if (!cap.isOpened()) | ||
CV_Error(Error::StsError, "Cannot opend video or file"); | ||
|
||
Mat frame; | ||
Mat result; | ||
static const std::string kWinName = "Human Segmentation Demo"; | ||
TickMeter tm; | ||
|
||
while (waitKey(1) < 0) | ||
{ | ||
cap >> frame; | ||
|
||
if (frame.empty()) | ||
{ | ||
if(inputPath.empty()) | ||
cout << "Frame is empty" << endl; | ||
break; | ||
} | ||
|
||
tm.start(); | ||
result = humanSegmentationModel.infer(frame); | ||
tm.stop(); | ||
|
||
Mat res_frame = visualize(frame, result, tm.getFPS()); | ||
|
||
if(visFlag || inputPath.empty()) | ||
{ | ||
imshow(kWinName, res_frame); | ||
if(!inputPath.empty()) | ||
waitKey(0); | ||
} | ||
if(saveFlag) | ||
{ | ||
cout << "Results are saved to result.jpg" << endl; | ||
|
||
imwrite("result.jpg", res_frame); | ||
} | ||
} | ||
|
||
return 0; | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters