Skip to content

binarybana/easyrag

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM RAG

A RAG (Retrieval Augmented Generation) implementation using LlamaIndex for document processing, Gemini for embeddings, and LanceDB for vector storage.

Setup

This project uses uv for dependency management and direnv for environment management. To get started:

  1. Install dependencies:
# Create and activate a new virtual environment
uv venv
source .venv/bin/activate

# Install dependencies
uv pip install -e .
  1. Set up environment:
# Create .env file with your Google API key
echo "GOOGLE_API_KEY=your_key_here" > .env

# Allow direnv to load the environment
direnv allow

Usage

Data Ingestion

python -m llm_rag.ingest --source /path/to/source --type [code|url|pdf]

Search Server

python -m llm_rag.search --db /path/to/lancedb

About

Easy RAG scripts for a local, embedded, MCP-enabled knowledge store.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published