A RAG (Retrieval Augmented Generation) implementation using LlamaIndex for document processing, Gemini for embeddings, and LanceDB for vector storage.
This project uses uv
for dependency management and direnv
for environment management. To get started:
- Install dependencies:
# Create and activate a new virtual environment
uv venv
source .venv/bin/activate
# Install dependencies
uv pip install -e .
- Set up environment:
# Create .env file with your Google API key
echo "GOOGLE_API_KEY=your_key_here" > .env
# Allow direnv to load the environment
direnv allow
python -m llm_rag.ingest --source /path/to/source --type [code|url|pdf]
python -m llm_rag.search --db /path/to/lancedb