Skip to content

This project compares the effects of Ridge (L2) and Lasso (L1) regression models on clinical data.

License

Notifications You must be signed in to change notification settings

barisgudul/Ridge_vs_Lasso_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Ridge vs Lasso Regression Comparison

📌 Project Overview

Performance comparison of Ridge (L2) and Lasso (L1) regression models on the Diabetes dataset.
Objective: Identify the most effective regularization method for blood glucose level prediction.

Ridge vs Lasso Coefficients

🚀 Key Features

  • Data preprocessing pipeline
  • Hyperparameter optimization with GridSearchCV
  • Coefficient analysis and visualization
  • Model performance comparison

📊 Dataset Information

Source: diabetes_clean.csv (768 samples)
Target Variable: glucose (blood glucose level)

Key Features:

  • pregnancies
  • diastolic (blood pressure)
  • triceps (skin thickness)
  • diabetes (diagnosis)
  • age
  • bmi

🧠 Model Details

Optimized Parameters

Model Best Alpha
Ridge 1
Lasso 0.1

Coefficient Comparison

Feature Ridge Lasso
diabetes 24.87 24.60
dpf 1.70 0.81
age 0.49 0.49
pregnancies -0.46 -0.45

📈 Key Results

  • Ridge: Balanced shrinkage while retaining all features
  • Lasso: 52% coefficient reduction for dpf feature
  • Common Finding: diabetes is the strongest predictor

🛠️ Installation

git clone https:/barisgudul/Ridge_vs_Lasso_Analysis.git
cd Ridge_vs_Lasso_Analysis

🖥️ Usage

# Run the analysis script
jupyter notebook LvsR.ipynb

📄 License

MIT License
License: MIT

Permissions:
✅ Free academic/research use
✅ Modification and redistribution
❌ Commercial use requires written consent

Full license terms available in LICENSE file.


📧 Contact Information

Project Maintainer
Author Badge
Email
LinkedIn

Contribution Guidelines:
We welcome collaborations! Please reach out via email before submitting PRs.