Skip to content

updated arange to mgrid in tutorials and references #71

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 14 additions & 27 deletions src/nki_samples/reference/allocated_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,7 @@ def allocated_fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref,

cur_addr = 0

id0 = nl.arange(0, 128)[:, None]
id1 = nl.arange(0, 128)[None, :]
id0, id1 = nl.mgrid[0:128, 0:128]
identity = nl.shared_constant(np.identity(128, dtype=np.int8), dtype=nl.bfloat16)
identity_load = nl.ndarray((par_dim(128), 128), dtype=pe_in_dt, buffer=ncc.sbuf.mod_alloc(base_addr=cur_addr))
cur_addr += 128 * pe_in_dt_itemsize
Expand Down Expand Up @@ -90,16 +89,14 @@ def allocated_fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref,
cur_addr += v_seq_n_tiles * d_head * pe_in_dt_itemsize

for i_v_seq_tile in nl.affine_range(v_seq_n_tiles):
ip_v = nl.arange(v_seq_tile_size)[:, None]
if_v = nl.arange(d_head_tile_size)[None, :]
ip_v, if_v = nl.mgrid[0:v_seq_tile_size, 0:d_head_tile_size]
v_local[i_v_seq_tile, ip_v, if_v] = nl.load(
v_ref[batch_id, i_v_seq_tile * v_seq_tile_size + ip_v, if_v],
dtype=pe_in_dt)

q_local = nl.ndarray((q_seq_n_tiles, par_dim(d_head_tile_size), q_seq_tile_size), dtype=pe_in_dt, buffer=ncc.sbuf.mod_alloc(base_addr=cur_addr, num_free_tiles=(q_seq_n_tiles, ))) # 8kb
cur_addr += q_seq_n_tiles * q_seq_tile_size * pe_in_dt_itemsize
ip_q = nl.arange(d_head_tile_size)[:, None]
if_q = nl.arange(q_seq_tile_size)[None, :]
ip_q, if_q = nl.mgrid[0:d_head_tile_size, 0:q_seq_tile_size]
for i_q_seq_tile in nl.affine_range(q_seq_n_tiles):
q_local[i_q_seq_tile, ip_q, if_q] = nl.load(
q_ref[batch_id, ip_q, i_q_seq_tile * q_seq_tile_size + if_q],
Expand All @@ -108,8 +105,7 @@ def allocated_fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref,

k_local = nl.ndarray((k_seq_n_tiles, par_dim(d_head_tile_size), k_seq_tile_size), dtype=pe_in_dt, buffer=ncc.sbuf.mod_alloc(base_addr=cur_addr, num_free_tiles=(k_seq_n_tiles, ))) # 8kb
cur_addr += k_seq_n_tiles * k_seq_tile_size * pe_in_dt_itemsize
ip_k = nl.arange(d_head_tile_size)[:, None]
if_k = nl.arange(k_seq_tile_size)[None, :]
ip_k, if_k = nl.mgrid[0:d_head_tile_size, 0:k_seq_tile_size]
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
k_local[i_k_seq_tile, ip_k, if_k] = nl.load(
k_ref[batch_id,
Expand Down Expand Up @@ -184,15 +180,13 @@ def psum_addr(bank_map, idx, pdim_size, fdim_size):

for i_interleave_grp in nl.affine_range(2):
# A SBUF buffer tile for an independent softmax tile
ip_max = nl.arange(q_seq_tile_size)[:, None]
if_max = nl.arange(k_seq_n_tiles)[None, :]
ip_max, if_max = nl.mgrid[0:q_seq_tile_size, 0:k_seq_n_tiles]

# Loop over RHS free of matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles): # indent = 4

# Tensor indices for accessing qk result in k_seq_tile_size
ip_qk = nl.arange(q_seq_tile_size)[:, None]
if_qk = nl.arange(k_seq_tile_size)[None, :]
ip_qk, if_qk = nl.mgrid[0:q_seq_tile_size, 0:k_seq_tile_size]

##############################################################
# Step 2. matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
Expand All @@ -219,12 +213,10 @@ def psum_addr(bank_map, idx, pdim_size, fdim_size):
np.max, data=neg_max_res[i_interleave_grp, ip_max, if_max],
axis=(1,), dtype=kernel_dtype, negate=True)

ip_softmax = nl.arange(q_seq_tile_size)[:, None]
if_softmax = nl.arange(seqlen)[None, :]
ip_sum_res = nl.arange(q_seq_tile_size)[:, None]
if_sum_res = nl.arange(d_head_tile_size)[None, :]
ip_softmax, if_softmax = nl.mgrid[0:q_seq_tile_size, 0:seqlen]
ip_sum_res, if_sum_res = nl.mgrid[0:q_seq_tile_size, 0:d_head_tile_size]

if_reduction = nl.arange(reduction_size)[None, :]
_, if_reduction = nl.mgrid[0:1, 0:reduction_size]
for i_exp in nl.affine_range(reduction_tiles):
exp_res[i_interleave_grp, ip_softmax, i_exp*reduction_size + if_reduction] = nisa.activation_reduce(np.exp,
data=qk_res_buf[i_interleave_grp, ip_softmax, i_exp * reduction_size + if_reduction],
Expand All @@ -242,30 +234,25 @@ def psum_addr(bank_map, idx, pdim_size, fdim_size):
###################################
# Step 5. transpose(softmax_res)
###################################
ip_scores_t = nl.arange(v_seq_tile_size)[:, None]
if_scores_t = nl.arange(v_seq_tile_size)[None, :]
ip_scores_t, if_scores_t = nl.mgrid[0:v_seq_tile_size, 0:v_seq_tile_size]
# Loop over matmul_1 contraction
for i_v_seq_tile in nl.affine_range(v_seq_n_tiles // 4):
for i_offset in nl.affine_range(4):
ip_scores = nl.arange(v_seq_tile_size)[:, None]
if_scores = nl.arange(v_seq_tile_size)[None, :]

ip_scores, if_scores = nl.mgrid[0:v_seq_tile_size, 0:v_seq_tile_size]
local_tp_buf[i_interleave_grp, i_v_seq_tile, ip_scores, i_offset*v_seq_tile_size + if_scores] = nisa.nc_matmul(
exp_res[i_interleave_grp, ip_scores, (i_v_seq_tile*4+i_offset) * v_seq_tile_size + if_scores],
identity_load)

if_batch = nl.arange(k_seq_tile_size)[None, :]
_, if_batch = nl.mgrid[0:1, 0:k_seq_tile_size]
trans_softmax_res[i_interleave_grp, ip_scores_t, i_v_seq_tile*k_seq_tile_size + if_batch] = nl.copy(local_tp_buf[i_interleave_grp, i_v_seq_tile, ip_scores, if_batch])

ip_out = nl.arange(d_head_tile_size)[:, None]
if_out = nl.arange(q_seq_tile_size)[None, :]
ip_out, if_out = nl.mgrid[0:d_head_tile_size, 0:q_seq_tile_size]

for i_v_seq_tile in nl.affine_range(v_seq_n_tiles):
######################################################################
# Step 6. matmul_1(stationary=v_local, moving=trans_softmax_res, contract=seqlen_v=seqlen_k)
######################################################################
ip_v_t = nl.arange(v_seq_tile_size)[:, None]
if_v_t = nl.arange(d_head_tile_size)[None, :]
ip_v_t, if_v_t = nl.mgrid[0:v_seq_tile_size, 0:d_head_tile_size]
attn_res_psum[i_interleave_grp, ip_out, if_out] += \
nisa.nc_matmul(moving=trans_softmax_res[i_interleave_grp, ip_scores_t, i_v_seq_tile*v_seq_tile_size+if_scores_t],
stationary=v_local[i_v_seq_tile, ip_v_t, if_v_t])
Expand Down
50 changes: 24 additions & 26 deletions src/nki_samples/reference/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -1029,37 +1029,42 @@ def fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref, use_causal_mask=
trans_v = nl.ndarray((par_dim(v_seq_tile_size), v_seq_n_tiles, d_head), dtype=pe_in_dt)

for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
ip_v = nl.arange(v_seq_tile_size)[:, None]
if_v = nl.arange(d_head_tile_size)[None, :]
ip_v, if_v = nl.mgrid[0:v_seq_tile_size, 0:d_head_tile_size]
trans_v[ip_v, i_k_seq_tile, if_v] = nl.load(
v_ref[batch_id, i_k_seq_tile * k_seq_tile_size + ip_v, if_v],
dtype=pe_in_dt)

q_local = nl.ndarray((q_seq_n_tiles, par_dim(d_head_tile_size), q_seq_tile_size), dtype=pe_in_dt)
ip_q = nl.arange(d_head_tile_size)[:, None]
if_q = nl.arange(q_seq_tile_size)[None, :]
ip_q, if_q = nl.mgrid[0:d_head_tile_size, 0:q_seq_tile_size]
for i_q_seq_tile in nl.affine_range(q_seq_n_tiles):
q_local[i_q_seq_tile, ip_q, if_q] = nl.load(
q_ref[batch_id, ip_q, i_q_seq_tile * q_seq_tile_size + if_q],
dtype=pe_in_dt) * softmax_scale

k_local = nl.ndarray((k_seq_n_tiles, par_dim(d_head_tile_size), k_seq_tile_size), dtype=pe_in_dt)
ip_k = nl.arange(d_head_tile_size)[:, None]
if_k = nl.arange(k_seq_tile_size)[None, :]
ip_k, if_k = nl.mgrid[0:d_head_tile_size, 0:k_seq_tile_size]
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
idx_1, idx_2 = nl.mgrid[0:k_seq_tile_size, 0:d_head_tile_size]
k_local[i_k_seq_tile, ip_k, if_k] = nl.load_transpose2d(
k_ref[batch_id,
i_k_seq_tile * k_seq_tile_size + idx_1,
idx_2],
dtype=pe_in_dt)
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
idx_1, idx_2 = nl.mgrid[0:k_seq_tile_size, 0:d_head_tile_size]
k_local[i_k_seq_tile, ip_k, if_k] = nl.load_transpose2d(
k_ref[batch_id,
i_k_seq_tile * k_seq_tile_size + nl.arange(k_seq_tile_size)[:, None],
nl.arange(d_head_tile_size)[None, :]],
dtype=pe_in_dt)
k_ref[batch_id,
i_k_seq_tile * k_seq_tile_size + idx_1,
idx_2],
dtype=pe_in_dt)


for i_q_seq_tile in nl.affine_range(q_seq_n_tiles): # indent = 2
# A SBUF buffer for an independent softmax tile
qk_res_buf = nl.ndarray((par_dim(q_seq_tile_size), seqlen), dtype=kernel_dtype)

neg_max_res = nl.ndarray((par_dim(q_seq_tile_size), k_seq_n_tiles), dtype=kernel_dtype)
ip_max = nl.arange(q_seq_tile_size)[:, None]
if_max = nl.arange(k_seq_n_tiles)[None, :]
ip_max, if_max = nl.mgrid[0:q_seq_tile_size, 0:k_seq_n_tiles]

# Loop over RHS free of matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles): # indent = 4
Expand All @@ -1070,8 +1075,7 @@ def fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref, use_causal_mask=
dtype=np.float32, buffer=nl.psum)

# Tensor indices for accessing qk result in k_seq_tile_size
ip_qk = nl.arange(q_seq_tile_size)[:, None]
if_qk = nl.arange(k_seq_tile_size)[None, :]
ip_qk, if_qk = nl.mgrid[0:q_seq_tile_size, 0:k_seq_tile_size]

##############################################################
# Step 2. matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
Expand Down Expand Up @@ -1105,10 +1109,8 @@ def fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref, use_causal_mask=
np.min, data=neg_max_res[ip_max, if_max],
axis=(1,), dtype=kernel_dtype, negate=False)

ip_softmax = nl.arange(q_seq_tile_size)[:, None]
if_softmax = nl.arange(seqlen)[None, :]
ip_sum_res = nl.arange(q_seq_tile_size)[:, None]
if_sum_res = nl.arange(d_head_tile_size)[None, :]
ip_softmax, if_softmax = nl.mgrid[0:q_seq_tile_size, 0:seqlen]
ip_sum_res, if_sum_res = nl.mgrid[0:q_seq_tile_size, 0:d_head_tile_size]

softmax_res = nl.ndarray((par_dim(q_seq_tile_size), seqlen), dtype=pe_in_dt)
sum_divisor = nl.ndarray((par_dim(q_seq_tile_size), d_head_tile_size), dtype=kernel_dtype)
Expand All @@ -1135,27 +1137,23 @@ def fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref, use_causal_mask=
attn_res_psum = nl.zeros((par_dim(d_head_tile_size), q_seq_tile_size),
dtype=np.float32, buffer=nl.psum)

ip_scores_t = nl.arange(k_seq_tile_size)[:, None]
if_scores_t = nl.arange(q_seq_tile_size)[None, :]
ip_scores_t, if_scores_t = nl.mgrid[0:k_seq_tile_size, 0:q_seq_tile_size]
# Loop over matmul_1 contraction
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
###################################
# Step 5. transpose(softmax_res)
###################################
ip_scores = nl.arange(q_seq_tile_size)[:, None]
if_scores = nl.arange(k_seq_tile_size)[None, :]
ip_scores, if_scores = nl.mgrid[0:q_seq_tile_size, 0:k_seq_tile_size]

trans_softmax_res[ip_scores_t, i_k_seq_tile, if_scores_t] = nisa.nc_transpose(
softmax_res[ip_scores, i_k_seq_tile * k_seq_tile_size + if_scores])

ip_out = nl.arange(d_head_tile_size)[:, None]
if_out = nl.arange(q_seq_tile_size)[None, :]
ip_out, if_out = nl.mgrid[0:d_head_tile_size, 0:q_seq_tile_size]
for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
######################################################################
# Step 6. matmul_1(stationary=trans_v, moving=trans_softmax_res, contract=seqlen_v=seqlen_k)
######################################################################
ip_v_t = nl.arange(k_seq_tile_size)[:, None]
if_v_t = nl.arange(d_head_tile_size)[None, :]
ip_v_t, if_v_t = nl.mgrid[0:k_seq_tile_size, 0:d_head_tile_size]
attn_res_psum[ip_out, if_out] += \
nisa.nc_matmul(moving=trans_softmax_res[ip_scores_t, i_k_seq_tile, if_scores_t],
stationary=trans_v[ip_v_t, i_k_seq_tile, if_v_t])
Expand Down
3 changes: 1 addition & 2 deletions src/nki_samples/reference/tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,7 @@
def add_kernel_nx8x128x512(a_ptr, b_ptr, n_elements):
c_ptr = nl.ndarray(a_ptr.shape, dtype=a_ptr.dtype, buffer=nl.shared_hbm)

ix = nl.arange(128)[:, None]
iy = nl.arange(512)[None, :]
ix, iy = nl.mgrid[0:128, 0:512]

tile_size = 128 * 512
block_size = 8 * tile_size
Expand Down
3 changes: 1 addition & 2 deletions src/nki_samples/reference/vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,8 +201,7 @@ def resize_nearest_fixed_dma_kernel(data_tensor, out_shape):
data_tile = data_tensor.reshape(shape=(in_b, in_seqlen, in_c))
out_tile = out_tensor.reshape(shape=(out_b, out_seqlen, out_c))

b_map = nl.arange(in_b)[:, None]
c_map = nl.arange(out_c)[None, :]
b_map, c_map = nl.mgrid[0:in_b, 0:out_c]

for i in nl.static_range(len(map)):
target_addr = data_tile[b_map, map[i], c_map]
Expand Down
11 changes: 3 additions & 8 deletions src/nki_samples/tutorials/layernorm/layernorm_nki_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,7 @@ def nki_layernorm_kernel_v1(input_tensor, epsilon, gamma_vector, beta_vector):
assert input_tensor.shape[1] == gamma_vector.shape[0] == beta_vector.shape[0]

# Generate tile indices for loading/storing data
i_p_io = nl.arange(nl.tile_size.pmax)[:, None]
i_f_io = nl.arange(input_tensor.shape[1])[None, :]
i_p_param = nl.arange(1)[:, None]
i_p_io, i_f_io, i_p_param = nl.mgrid[0:nl.tile_size.pmax, 0:input_tensor.shape[1], 0:1]

# Number of rows in the input tensor
num_rows = input_tensor.shape[0]
Expand Down Expand Up @@ -81,9 +79,7 @@ def nki_layernorm_kernel_v2(input_tensor, epsilon, gamma_vector, beta_vector):
assert input_tensor.shape[1] == gamma_vector.shape[0] == beta_vector.shape[0]

# Generate tile indices for loading/storing data
i_p_io = nl.arange(nl.tile_size.pmax)[:, None]
i_f_io = nl.arange(input_tensor.shape[1])[None, :]
i_p_param = nl.arange(1)[:, None]
i_p_io, i_f_io, i_p_param = nl.mgrid[0:nl.tile_size.pmax, 0:input_tensor.shape[1], 0:1]

# Number of rows in the input tensor
num_rows = input_tensor.shape[0]
Expand All @@ -104,8 +100,7 @@ def nki_layernorm_kernel_v2(input_tensor, epsilon, gamma_vector, beta_vector):

# Tile free dimension of the input tensor by nl.tile_size.bn_stats_fmax,
# as bn_stats has a free dimension size limit
i_f_bn = nl.arange(nl.tile_size.bn_stats_fmax)[None, :]
i_f_stats = nl.arange(6)[None, :]
i_f_bn, i_f_stats = nl.mgrid[0:nl.tile_size.bn_stats_fmax, 0:6]
num_bn_stats = math.ceil(input_tensor.shape[1]/nl.tile_size.bn_stats_fmax)
stats_results = nl.ndarray((nl.tile_size.pmax, 6*num_bn_stats), dtype=np.float32)
for j in nl.affine_range(num_bn_stats):
Expand Down
4 changes: 1 addition & 3 deletions src/nki_samples/tutorials/rmsnorm/rmsnorm_nki_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,7 @@ def nki_rmsnorm_kernel(a_tensor, g_tensor):
assert a_tensor.shape[1] == g_tensor.shape[0]

# Generate tensor indices to index input tensor
ix = nl.arange(128)[:, None]
iw = nl.arange(1)[:, None]
iy = nl.arange(a_tensor.shape[1])[None, :]
ix, iw, iy = nl.mgrid[0:128, 0:1, 0:a_tensor.shape[1]]

num_rows = a_tensor.shape[0]

Expand Down
Loading
Loading