full_body_en.mp4
✨ For more results, visit our Project Page ✨
- [2025.01.21] 🔥 We update the Colab demo, welcome to try it.
- [2025.01.10] 🔥 We release our inference codes and models.
- [2024.11.29] 🔥 Our paper is in public on arxiv.
Tested Environment
- System: Centos 7.2
- GPU: A100
- Python: 3.10
- tensorRT: 8.6.1
Clone the codes from GitHub:
git clone https://github.com/antgroup/ditto-talkinghead
cd ditto-talkinghead
Create conda
environment:
conda env create -f environment.yaml
conda activate ditto
If you have problems creating a conda environment, you can also refer to our Colab.
After correctly installing pytorch
, cuda
and cudnn
, you only need to install a few packages using pip:
pip install \
tensorrt==8.6.1 \
librosa \
tqdm \
filetype \
imageio \
opencv_python_headless \
scikit-image \
cython \
cuda-python \
imageio-ffmpeg \
colored \
polygraphy \
numpy==2.0.1
If you don't use conda
, you may also need to install ffmpeg
according to the official website.
Download checkpoints from HuggingFace and put them in checkpoints
dir:
git lfs install
git clone https://huggingface.co/digital-avatar/ditto-talkinghead checkpoints
The checkpoints
should be like:
./checkpoints/
├── ditto_cfg
│ ├── v0.4_hubert_cfg_trt.pkl
│ └── v0.4_hubert_cfg_trt_online.pkl
├── ditto_onnx
│ ├── appearance_extractor.onnx
│ ├── blaze_face.onnx
│ ├── decoder.onnx
│ ├── face_mesh.onnx
│ ├── hubert.onnx
│ ├── insightface_det.onnx
│ ├── landmark106.onnx
│ ├── landmark203.onnx
│ ├── libgrid_sample_3d_plugin.so
│ ├── lmdm_v0.4_hubert.onnx
│ ├── motion_extractor.onnx
│ ├── stitch_network.onnx
│ └── warp_network.onnx
└── ditto_trt_Ampere_Plus
├── appearance_extractor_fp16.engine
├── blaze_face_fp16.engine
├── decoder_fp16.engine
├── face_mesh_fp16.engine
├── hubert_fp32.engine
├── insightface_det_fp16.engine
├── landmark106_fp16.engine
├── landmark203_fp16.engine
├── lmdm_v0.4_hubert_fp32.engine
├── motion_extractor_fp32.engine
├── stitch_network_fp16.engine
└── warp_network_fp16.engine
- The
ditto_cfg/v0.4_hubert_cfg_trt_online.pkl
is online config - The
ditto_cfg/v0.4_hubert_cfg_trt.pkl
is offline config
Run inference.py
:
python inference.py \
--data_root "<path-to-trt-model>" \
--cfg_pkl "<path-to-cfg-pkl>" \
--audio_path "<path-to-input-audio>" \
--source_path "<path-to-input-image>" \
--output_path "<path-to-output-mp4>"
For example:
python inference.py \
--data_root "./checkpoints/ditto_trt_Ampere_Plus" \
--cfg_pkl "./checkpoints/ditto_cfg/v0.4_hubert_cfg_trt.pkl" \
--audio_path "./example/audio.wav" \
--source_path "./example/image.png" \
--output_path "./tmp/result.mp4"
❗Note:
We have provided the tensorRT model with hardware-compatibility-level=Ampere_Plus
(checkpoints/ditto_trt_Ampere_Plus/
). If your GPU does not support it, please execute the cvt_onnx_to_trt.py
script to convert from the general onnx model (checkpoints/ditto_onnx/
) to the tensorRT model.
python script/cvt_onnx_to_trt.py --onnx_dir "./checkpoints/ditto_onnx" --trt_dir "./checkpoints/ditto_trt_custom"
Then run inference.py
with --data_root=./checkpoints/ditto_trt_custom
.
Our implementation is based on S2G-MDDiffusion and LivePortrait. Thanks for their remarkable contribution and released code! If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.
This repository is released under the Apache-2.0 license as found in the LICENSE file.
If you find this codebase useful for your research, please use the following entry.
@article{li2024ditto,
title={Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis},
author={Li, Tianqi and Zheng, Ruobing and Yang, Minghui and Chen, Jingdong and Yang, Ming},
journal={arXiv preprint arXiv:2411.19509},
year={2024}
}