Skip to content

anilknayak/ImageCaptioning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Capitioning

Download pre trained model and pickle files

Download model and pickle file from following folder [it has two folders 'model' and 'pkl'] https://drive.google.com/open?id=1gLhixTjhBkpeZkJ6DsYKzMdyCVkZUrtF

Download Flickr8k dataset

Send a request in the below link to download Flickr_8k_dataset https://illinois.edu/fb/sec/1713398

You will be receiving an email to download the dataset. There are two zip file

  1. Flickr8k_Dataset.zip [Images] place all the images into data/images folder
  2. Flickr8k_text.zip [captions] place all the captions into data/caption folder

Project Directory Structure

After you download all the required files, your directory structure will look like

.
├── ImageCaptioning
    ├── data                    # data directory
    │   ├── images              # All the images from flickr8k dataset
    │   └── caption             # captions from flickr8k dataset
    ├── pkl                     # Pickle Files
    │   ├── details.pkl            # Details pickle has max description length
    │   └── features.pkl           # all image feature embedding
    │   └── tokenizer.pkl          # tokenizer for description
    │   └── description.pkl        # captions for each image
    └── model
    │   ├── model-ep002-loss3.670-val_loss3.849.h5            # model saved after epoch 2
    │   └── model-ep005-loss3.226-val_loss3.783.h5            # model saved after epoch 5
    └── ipython
    │   ├── ImageCaptioning.ipynb           # ipython notebook
    │   └── model.png                       # network model diagram
    ├── captioning.py           # training module
    ├── gui.py                  # gui module
    ├── prepare.py              # helper module
    └── test_images.py          # testing module

How to run

  1. First Run the captioning.py for training
  2. Run test_images.py and provide a image path to test images
  3. Run gui.py for real world testing

GUI

image GUI