Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Return applied alpha for MixUp #1572

Merged
merged 3 commits into from
Mar 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ repos:
- id: codespell
additional_dependencies: ["tomli"]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.8.0
rev: v1.9.0
hooks:
- id: mypy
files: ^albumentations/
Expand Down
10 changes: 10 additions & 0 deletions albumentations/augmentations/mixing/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@ class MixUp(ReferenceBasedTransform):
- The returned dictionary must include an 'image' key with a numpy array value.
- It may also include 'mask', 'global_label' each associated with numpy array values.
Defaults to a function that assumes input dictionary contains numpy arrays and directly returns it.
mix_coef_return_name (str): Name used for the applied alpha coefficient in the returned dictionary.
Defaults to "mix_coef".
alpha (float):
The alpha parameter for the Beta distribution, influencing the mix's balance. Must be ≥ 0.
Higher values lead to more uniform mixing. Defaults to 0.4.
Expand Down Expand Up @@ -65,10 +67,12 @@ def __init__(
reference_data: Optional[Union[Generator[ReferenceImage, None, None], Sequence[Any]]] = None,
read_fn: Callable[[ReferenceImage], Any] = lambda x: {"image": x, "mask": None, "class_label": None},
alpha: float = 0.4,
mix_coef_return_name: str = "mix_coef",
always_apply: bool = False,
p: float = 0.5,
):
super().__init__(always_apply, p)
self.mix_coef_return_name = mix_coef_return_name

if alpha < 0:
msg = "Alpha must be >= 0."
Expand Down Expand Up @@ -151,3 +155,9 @@ def get_params(self) -> Dict[str, Union[None, float, Dict[str, Any]]]:
# If mix_data is not None, calculate mix_coef and apply read_fn
mix_coef = beta(self.alpha, self.alpha) # Assuming beta is defined elsewhere
return {"mix_data": self.read_fn(mix_data), "mix_coef": mix_coef}

def apply_with_params(self, params: Dict[str, Any], *args: Any, **kwargs: Any) -> Dict[str, Any]:
res = super().apply_with_params(params, *args, **kwargs)
if self.mix_coef_return_name:
res[self.mix_coef_return_name] = params["mix_coef"]
return res
2 changes: 1 addition & 1 deletion requirements-dev.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
deepdiff>=6.7.1
mypy>=1.8.0
mypy>=1.9.0
pre_commit>=3.5.0
pytest>=8.0.2
pytest_cov>=4.1.0
Expand Down
30 changes: 22 additions & 8 deletions tests/test_mixing.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def complex_read_fn_image(x):
"reference_data": complex_image_generator(),
"read_fn": complex_read_fn_image})] )
def test_image_only(augmentation_cls, params, image):
aug = augmentation_cls(p=1, **params)
aug = A.Compose([augmentation_cls(p=1, **params)], p=1)
data = aug(image=image)
assert data["image"].dtype == np.uint8

Expand All @@ -58,20 +58,25 @@ def test_image_only(augmentation_cls, params, image):
]
)
def test_image_global_label(augmentation_cls, params, image, global_label):
aug = augmentation_cls(p=1, **params)
aug = A.Compose([augmentation_cls(p=1, **params)], p=1)

data = aug(image=image, global_label=global_label)

assert data["image"].dtype == np.uint8

reference_item = params["read_fn"](aug.reference_data[0])
reference_data = params["reference_data"][0]

reference_item = params["read_fn"](reference_data)

reference_image = reference_item["image"]
reference_global_label = reference_item["global_label"]

mix_coef = data["mix_coef"]

mix_coeff_image = find_mix_coef(data["image"], image, reference_image)
mix_coeff_label = find_mix_coef(data["global_label"], global_label, reference_global_label)

assert math.isclose(mix_coef, mix_coeff_image, abs_tol=0.01)
assert math.isclose(mix_coeff_image, mix_coeff_label, abs_tol=0.01)
assert 0 <= mix_coeff_image <= 1

Expand All @@ -85,16 +90,19 @@ def test_image_global_label(augmentation_cls, params, image, global_label):
"read_fn": lambda x: x})]
)
def test_image_mask_global_label(augmentation_cls, params, image, mask, global_label):
aug = augmentation_cls(p=1, **params)
aug = A.Compose([augmentation_cls(p=1, **params)], p=1)

data = aug(image=image, global_label=global_label, mask=mask)

assert data["image"].dtype == np.uint8
reference_data = params["reference_data"][0]

mix_coeff_image = find_mix_coef(data["image"], image, aug.reference_data[0]["image"])
mix_coeff_mask = find_mix_coef(data["mask"], mask, aug.reference_data[0]["mask"])
mix_coeff_label = find_mix_coef(data["global_label"], global_label, aug.reference_data[0]["global_label"])
mix_coef = data["mix_coef"]

mix_coeff_image = find_mix_coef(data["image"], image, reference_data["image"])
mix_coeff_mask = find_mix_coef(data["mask"], mask, reference_data["mask"])
mix_coeff_label = find_mix_coef(data["global_label"], global_label, reference_data["global_label"])

assert math.isclose(mix_coef, mix_coeff_image, abs_tol=0.01)
assert math.isclose(mix_coeff_image, mix_coeff_label, abs_tol=0.01)
assert math.isclose(mix_coeff_image, mix_coeff_mask, abs_tol=0.01)
assert 0 <= mix_coeff_image <= 1
Expand All @@ -115,6 +123,8 @@ def test_additional_targets(image, mask, global_label):

data = aug(image=image, global_label=global_label, mask=mask, image1=image1, global_label1=global_label1, mask1=mask1)

mix_coef = data["mix_coef"]

assert data["image"].dtype == np.uint8

mix_coeff_image = find_mix_coef(data["image"], image, reference_data[0]["image"])
Expand All @@ -125,6 +135,7 @@ def test_additional_targets(image, mask, global_label):
mix_coeff_mask1 = find_mix_coef(data["mask1"], mask1, reference_data[0]["mask"])
mix_coeff_label1 = find_mix_coef(data["global_label1"], global_label1, reference_data[0]["global_label"])

assert math.isclose(mix_coef, mix_coeff_image, abs_tol=0.01)
assert math.isclose(mix_coeff_image, mix_coeff_label, abs_tol=0.01)

assert math.isclose(mix_coeff_image, mix_coeff_mask, abs_tol=0.01)
Expand Down Expand Up @@ -176,6 +187,9 @@ def test_pipeline(augmentation_cls, params, image, mask, global_label):

assert data["image"].dtype == np.uint8

mix_coef = data["mix_coef"]

mix_coeff_label = find_mix_coef(data["global_label"], global_label, reference_data[0]["global_label"])

assert math.isclose(mix_coef, mix_coeff_label, abs_tol=0.01)
assert 0 <= mix_coeff_label <= 1
Loading