RKLLM software stack can help users to quickly deploy AI models to Rockchip chips. The overall framework is as follows:
In order to use RKNPU, users need to first run the RKLLM-Toolkit tool on the computer, convert the trained model into an RKLLM format model, and then inference on the development board using the RKLLM C API.
-
RKLLM-Toolkit is a software development kit for users to perform model conversionand quantization on PC.
-
RKLLM Runtime provides C/C++ programming interfaces for Rockchip NPU platform to help users deploy RKLLM models and accelerate the implementation of LLM applications.
-
RKNPU kernel driver is responsible for interacting with NPU hardware. It has been open source and can be found in the Rockchip kernel code.
- RK3588 Series
- RK3576 Series
- RK3562 Series
- LLAMA models
- TinyLLAMA models
- Qwen models
- Phi models
- ChatGLM3-6B
- Gemma2
- Gemma3
- InternLM2 models
- MiniCPM models
- TeleChat models
- Qwen2-VL-2B-Instruct
- MiniCPM-V-2_6
- DeepSeek-R1-Distill
- Janus-Pro-1B
- InternVL2-1B
- Qwen2.5-VL-3B-Instruct
llm model | platform | dtype | seqlen | max_context | new_tokens | TTFT(ms) | Tokens/s | memory(G) |
---|---|---|---|---|---|---|---|---|
Qwen2-0.5B | RK3562 | w4a16_g128 | 64 | 320 | 256 | 524 | 5.67 | 0.39 |
RK3562 | w4a8_g32 | 64 | 320 | 256 | 873 | 12.00 | 0.48 | |
RK3562 | w8a8 | 64 | 320 | 256 | 477 | 11.50 | 0.61 | |
RK3576 | w4a16 | 64 | 320 | 256 | 204 | 34.50 | 0.40 | |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 212 | 32.40 | 0.40 | |
RK3588 | w8a8 | 64 | 320 | 256 | 79 | 41.50 | 0.62 | |
RK3588 | w8a8_g128 | 64 | 320 | 256 | 183 | 25.07 | 0.75 | |
TinyLLAMA-1.1B | RK3576 | w4a16 | 64 | 320 | 256 | 345 | 21.10 | 0.77 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 410 | 18.50 | 0.80 | |
RK3588 | w8a8 | 64 | 320 | 256 | 140 | 24.21 | 1.25 | |
RK3588 | w8a8_g512 | 64 | 320 | 256 | 195 | 20.08 | 1.29 | |
Qwen2-1.5B | RK3576 | w4a16 | 64 | 320 | 256 | 512 | 14.40 | 1.75 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 550 | 12.75 | 1.76 | |
RK3588 | w8a8 | 64 | 320 | 256 | 206 | 16.46 | 2.47 | |
RK3588 | w8a8_g128 | 64 | 320 | 256 | 725 | 7.00 | 2.65 | |
Phi-3-3.8B | RK3576 | w4a16 | 64 | 320 | 256 | 975 | 6.60 | 2.16 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 1180 | 5.85 | 2.23 | |
RK3588 | w8a8 | 64 | 320 | 256 | 516 | 7.44 | 3.88 | |
RK3588 | w8a8_g512 | 64 | 320 | 256 | 610 | 6.13 | 3.95 | |
ChatGLM3-6B | RK3576 | w4a16 | 64 | 320 | 256 | 1168 | 4.62 | 3.86 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 1583 | 3.82 | 3.96 | |
RK3588 | w8a8 | 64 | 320 | 256 | 800 | 4.95 | 6.69 | |
RK3588 | w8a8_g128 | 64 | 320 | 256 | 2190 | 2.70 | 7.18 | |
Gemma2-2B | RK3576 | w4a16 | 64 | 320 | 256 | 628 | 8.00 | 3.63 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 776 | 7.40 | 3.63 | |
RK3588 | w8a8 | 64 | 320 | 256 | 342 | 9.67 | 4.84 | |
RK3588 | w8a8_g128 | 64 | 320 | 256 | 1055 | 5.49 | 5.14 | |
InternLM2-1.8B | RK3576 | w4a16 | 64 | 320 | 256 | 475 | 13.30 | 1.59 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 572 | 11.95 | 1.62 | |
RK3588 | w8a8 | 64 | 320 | 256 | 206 | 15.66 | 2.38 | |
RK3588 | w8a8_g512 | 64 | 320 | 256 | 298 | 12.66 | 2.45 | |
MiniCPM3-4B | RK3576 | w4a16 | 64 | 320 | 256 | 1397 | 4.80 | 2.70 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 1645 | 4.39 | 2.80 | |
RK3588 | w8a8 | 64 | 320 | 256 | 702 | 6.15 | 4.65 | |
RK3588 | w8a8_g128 | 64 | 320 | 256 | 1691 | 3.42 | 5.06 | |
llama3-8B | RK3576 | w4a16 | 64 | 320 | 256 | 1608 | 3.60 | 5.63 |
RK3576 | w4a16_g128 | 64 | 320 | 256 | 2010 | 3.00 | 5.76 | |
RK3588 | w8a8 | 64 | 320 | 256 | 1128 | 3.79 | 9.21 | |
RK3588 | w8a8_g512 | 64 | 320 | 256 | 1281 | 3.05 | 9.45 |
multimodal model | image input size | vision model dtype | vision infer time(s) | vision memory(MB) | llm model dtype | seqlen | max_context | new_tokens | TTFT(ms) | Tokens/s | llm memory(G) | platform |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qwen2-VL-2B | (1, 3, 392, 392) | fp16 | 3.55 | 1436.52 | w4a16 | 256 | 384 | 128 | 2094.17 | 13.23 | 1.75 | RK3576 |
fp16 | 3.28 | 1436.52 | w8a8 | 256 | 384 | 128 | 856.86 | 16.19 | 2.47 | RK3588 | ||
MiniCPM-V-2_6 | (1, 3, 448, 448) | fp16 | 2.40 | 1031.30 | w4a16 | 128 | 256 | 128 | 2997.70 | 3.84 | 5.50 | RK3576 |
fp16 | 3.27 | 976.98 | w8a8 | 128 | 256 | 128 | 1720.60 | 4.13 | 8.88 | RK3588 |
- This performance data were collected based on the maximum CPU and NPU frequencies of each platform.
- The script for setting the frequencies is located in the scripts directory.
- The vision model were tested based on all NPU core with rknn-toolkit2 version 2.2.0.
- Run the frequency-setting script from the
scripts
directory on the target platform. - Execute
export RKLLM_LOG_LEVEL=1
on the device to log model inference performance and memory usage. - Use the
eval_perf_watch_cpu.sh
script to measure CPU utilization. - Use the
eval_perf_watch_npu.sh
script to measure NPU utilization.
- You can download the latest package from RKLLM_SDK, fetch code: rkllm
- You can download the converted rkllm model from rkllm_model_zoo, fetch code: rkllm
- Multimodel deployment demo: Qwen2-VL-2B_Demo
- API usage demo: DeepSeek-R1-Distill-Qwen-1.5B_Demo
- API server demo: rkllm_server_demo
- Multimodal_Interactive_Dialogue_Demo Multimodal_Interactive_Dialogue_Demo
-
The supported Python versions are:
- Python 3.8
- Python 3.9
- Python 3.10
- Python 3.11
- Python 3.12
Note: Before installing package in a Python 3.12 environment, please run the command:
export BUILD_CUDA_EXT=0
- On some platforms, you may encounter an error indicating that libomp.so cannot be found. To resolve this, locate the library in the corresponding cross-compilation toolchain and place it in the board's lib directory, at the same level as librkllmrt.so.
- Latest version: v1.2.0
If you want to deploy additional AI model, we have introduced a SDK called RKNN-Toolkit2. For details, please refer to:
https://github.com/airockchip/rknn-toolkit2
- Supports custom model conversion.
- Supports chat_template configuration.
- Enables multi-turn dialogue interactions.
- Implements automatic prompt cache reuse for improved inference efficiency.
- Expands maximum context length to 16K.
- Supports embedding flash storage to reduce memory usage.
- Introduces the GRQ Int4 quantization algorithm.
- Supports GPTQ-Int8 model conversion.
- Compatible with the RK3562 platform.
- Added support for visual multimodal models such as InternVL2, Janus, and Qwen2.5-VL.
- Supports CPU core configuration.
- Added support for Gemma3
- Added support for Python 3.9/3.11/3.12
for older version, please refer CHANGELOG