Skip to content

ai-forever/HandReader

Repository files navigation

HandReader Advanced Techniques for Efficient Fingerspelling Recognition

We introduce three architecture each model possesses distinct advantages and achieves state-of-the-art results on the ChicagoFSWild and ChicagoFSWild+ datasets. For more information see our arxiv paper TBA.

Installation

Clone and install required python packages:

  1. Create env for RGB and KP+RGB

    • create conda env with conda create -n RGB_KP python=3.9
    • install torch with pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
    • install turbojpeg with conda install conda-forge::pyturbojpeg=1.7.7
    • install other dependicies with pip install -r RGB_KP_reqs.txt
  2. Create env for KP

    • create conda env with conda create -n KP python=3.9
    • install torch with pip install torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
    • install turbojpeg with conda install conda-forge::pyturbojpeg=1.7.7
    • install other dependicies with pip install -r KP_reqs.txt

Dataset

TBA

Models

Recoginzers ChicagoFSWild ChicagoFSWild+ Znaki
HandReader_{KP} 69.3 72.4 92.65
HandReader_{RGB} 72.0 73.8 92.39
HandReader_{RGB_KP} 72.9 75.6 94.94

We provide models for each architecture trained on datasets ChicagoFSWild, ChicagoFSWild+, and Znaki, which can be downloaded from the link below.

Pretrained models Link
HandReader_ChicagoFSWild download
HandReader_ChicagoFSWild+ download
HandReader_Znaki download

Train

You can use downloaded trained models, otherwise select a parameters for training in `configs` folder. To start train select config for znaki dataset, *_znaki.yaml can be used, specified all needed paths, do the same for *_chicago.yaml. Then run:
python src/train.py --config-name <cgf_name.yaml>`

example to start training model for kp_rgb with dataset Znaki:

python src/train.py --config-name kp_rgb_Znaki.yaml`

Test

To test model with provided weights. * - could be either KP, RGB, KP_RGB based on which model type was trained. For example above:
python src/test_KP_RGB.py --config-name kp_rgb_Znaki.yaml

Demo

TBA

Authors and Credits

About

HandReader: Advanced Techniques for Efficient Fingerspelling Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages