Implementation of a light-weighted Latent-Composer in PyTorch based on "Composer: Creative and Controllable Image Synthesis with Composable Conditions".
- Implement color palette decomposition.
- Reimplement the DDIM sampling code.
- Release inference code.
- Release pretrained models.
$ git clone https://github.com/aartykov/Latent-Composer-pytorch.git
$ conda env create -f environment.yaml
$ conda activate latent-composer
- Download stable diffusion v1.5 checkpoints from https://huggingface.co/runwayml/stable-diffusion-v1-5 and put it inside the /models directory.
- Download MiDAS checkpoints from https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt and put it inside the /annotators/ckpts directory.
- Download quantized VAE autoencoder checkpoints from https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip and put it inside the /models/first_stage_models/kl-f8 directory.
# Train
$ cd Latent-Composer-pytorch
$ CUDA_VISIBLE_DEVICES=0 python main.py config/composer.yaml -t --gpus 0,
@article{lhhuang2023composer,
title={Composer: Creative and Controllable Image Synthesis with Composable Conditions},
author={Huang, Lianghua and Chen, Di and Liu, Yu and Yujun, Shen and Zhao, Deli and Jingren, Zhou},
booktitle={arXiv preprint arxiv:2302.09778},
year={2023}
}
@misc{zhang2023adding,
title={Adding Conditional Control to Text-to-Image Diffusion Models},
author={Lvmin Zhang and Maneesh Agrawala},
year={2023},
eprint={2302.05543},
archivePrefix={arXiv},
primaryClass={cs.CV}
}