Skip to content

Commit fc94868

Browse files
committed
Final commit?
1 parent bcca14d commit fc94868

File tree

8 files changed

+9
-8
lines changed

8 files changed

+9
-8
lines changed

Methods/04-diffusion.tex

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ \subsection{Heat conduction in a finite bar}
115115
0 & \text{if } -L \leq x < 0
116116
\end{cases}
117117
\end{align}
118-
with boundary conditions
118+
with boundary conditions
119119
\begin{align} \label{eq:4.9}
120120
\theta(L, t) = 1, \quad \theta(-L, t) = 0.
121121
\end{align}
@@ -149,9 +149,9 @@ \subsubsection{Transforming boundary conditions}
149149
\hat \theta(x,0) = H(x) - \frac{x+L}{2L}
150150
\end{align}
151151

152-
\begin{figure}[h]
153-
\centering
154-
\includegraphics[height=5cm]{04-transformbcs}
152+
\begin{figure}[h]
153+
\centering
154+
\includegraphics[height=5cm]{04-transformbcs}
155155
\end{figure}
156156

157157
\subsubsection{Seperation of variables}

Methods/Methods.pdf

15 KB
Binary file not shown.

ProbAndMeasure/07_ergodic_theory.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -320,7 +320,7 @@ \subsection{Infinite product spaces}
320320

321321
Let $(X_n)_{n \in \mathbb N}$ be a sequence of iid r.v.s defined on $(\Omega, \mathcal F, \mathbb P)$ with common law $\mu_{X_n} = m$ for all $n$; this exists by an earlier theorem.
322322
We define a map $X \colon \Omega \to E$ by $X(\omega) = (X_1(\omega), X_2(\omega), \dots)$.
323-
This is $\mathcal F$--$\sigma(\mathcal C)$ measurable, since for all $A \in \mathcal C$, we have
323+
This is $\sigma(\mathcal C)$ measurable, since for all $A \in \mathcal C$, we have
324324
\begin{align*}
325325
X^{-1}(A) = \qty{\omega : X_1(\omega) \in A_1, \dots, X_N(\omega) \in A_N} = \bigcap_{n=1}^N X_n^{-1}(A_n) \in \mathcal F
326326
\end{align*}

ProbAndMeasure/probmeasure.pdf

-2.11 KB
Binary file not shown.

QuantumInfoAndComputing/02_quantum_states_as_information_carriers.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ \subsection{Distinguishing non-orthogonal states}
104104
For a state $\ket{\beta}$ orthogonal to both $\ket{\alpha_0}$ and $\ket{\alpha_1}$, we have $\Delta \ket{\beta} = 0$.
105105
Therefore, $\Delta$ acts nontrivially only in the vector space spanned by $\ket{\alpha_0}$ and $\ket{\alpha_1}$, and hence has at most two nonzero eigenvalues, and its eigenvectors lie in $\vecspan\qty{\ket{\alpha_0}, \ket{\alpha_1}}$.
106106

107-
Now, $\Tr\Delta = 0$ so the eigenvalues are $\delta$ and $-\delta$ for some $\delta \in \mathbb R$.
107+
Now, $\Tr\Delta = 0$\footnote{$\Tr \Delta = \bra{\alpha_0}\ket{\alpha_0} - \bra{\alpha_1}\ket{\alpha_1}$} so the eigenvalues are $\delta$ and $-\delta$ for some $\delta \in \mathbb R$.
108108
Let $\ket{p}$ be the eigenvector for $\delta$, and $\ket{m}$ be the eigenvector for $-\delta$, so $\ip{p}{m} = 0$.
109109
We can write $\Delta$ in its spectral decomposition, giving $\Delta = \delta \op{p}{p} - \delta \op{m}{m}$.
110110

QuantumInfoAndComputing/04_quantum_computation.tex

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -589,11 +589,12 @@ \subsection{Shor's algorithm}
589589
\end{align*}
590590
where $\omega = 2^{\frac{2\pi i}{M}}$ where $M = 2^m$.
591591
$S$ is a geometric series with $\alpha = \omega^{cr}$.
592-
If $\frac{M}{r} \not\in \mathbb Z$, $\alpha^A \neq 1$.
592+
If $\alpha = 1$ then $c \mid \frac{M}{r}$.
593+
But if $\frac{M}{r} \not\in \mathbb Z$, this cannot be true.
593594
We claim that a measurement on $QFT_{2^m} \ket{\mathrm{per}}$ yields an integer $c$ which is close to a multiple of $\frac{M}{r}$ with high probability.
594595

595596
Consider $k\frac{2^m}{r}$ for $k = 0, \dots, r-1$.
596-
Each of these multiples is within $\frac{1}{2}$ of a unique integer; indeed, $2^m = Br + b$ so $r < 2^m$, giving that $k\frac{2^m}{r}$ cannot be a half integer.
597+
Each of these multiples is within $\frac{1}{2}$ of a unique integer; indeed, $r < N$ and $2^m > N^2$, giving that $k\frac{2^m}{r}$ cannot be a half integer.
597598
Consider the values of $c$ s.t. $\abs{c - k \frac{2^m}{r}} < \frac{1}{2}$ for $k = 0, \dots, r-1$.
598599
% Note that $\omega^{cr} = 1$ if $e^{\frac{2\pi i cr}{M}} = 1$.
599600
\begin{theorem}

QuantumInfoAndComputing/qic.pdf

842 Bytes
Binary file not shown.

Stochastic Financial Models/sfm.pdf

-5.1 KB
Binary file not shown.

0 commit comments

Comments
 (0)