Skip to content

Commit bcca14d

Browse files
committed
Remove newlines at end of environments
1 parent cd9e861 commit bcca14d

35 files changed

+1229
-1229
lines changed

Analysis and Topology/04-differentiation.tex

Lines changed: 115 additions & 115 deletions
Large diffs are not rendered by default.

Analysis and Topology/AnalTop.pdf

6 Bytes
Binary file not shown.

Groups/02-dihedral.tex

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -18,13 +18,13 @@ \subsection{Dihedral Groups}\label{dihedral-groups}}
1818
Let $P$ be a regular polygon with $n$ sides and $V$ its set of vertices.
1919
We can assume
2020
\begin{align*}
21-
V = \{ e^{2\pi i k /n} : 0 \leq k < n \}
21+
V = \{ e^{2\pi i k /n} : 0 \leq k < n \}
2222
\end{align*} (nth roots of unity in $\mathbb{C}$).
2323
Then the symmetries of $P$ are the isometries (i.e.~distance preserving maps of $\mathbb{C}$ that map $V$ to $V$).
24-
24+
2525
We will show that:
2626
for $n \geq 3$ the set of symmetries of $P$, under composition, form a nonabelian group of order $2n$. This group is called the \emph{dihedral group} of order $2n$ and denoted $D_{2n}$.
27-
\end{definition}
27+
\end{definition}
2828

2929
\emph{Warning} - sometimes $D_{2n}$ is denoted $D_n$
3030

@@ -88,7 +88,7 @@ \subsection{Dihedral Groups}\label{dihedral-groups}}
8888

8989
Algebraically we write,
9090
\begin{align*}
91-
D_{2n} = \left\langle \underbrace{r,\ t}_\text{generators} | \underbrace{r^n = e,\ t^2 = e,\ trt = r^{-1}}_\text{relations} \right\rangle
91+
D_{2n} = \left\langle \underbrace{r,\ t}_\text{generators} | \underbrace{r^n = e,\ t^2 = e,\ trt = r^{-1}}_\text{relations} \right\rangle
9292
\end{align*}
9393

9494
Finally, $D_2 \cong C_2$ and $D_4$ is \Cref{exm:nine}.
@@ -104,7 +104,7 @@ \subsection{Symmetric Groups}\label{symmetric-groups}}
104104
f: X \to X
105105
\end{align*} is called a \emph{permutation} of $X$.
106106
Let $\operatorname{Sym} X$ denote the set of all permutations of $X$.
107-
\end{definition}
107+
\end{definition}
108108

109109
\begin{proposition}
110110
$\operatorname{Sym} X$ is a group under composition of functions. It is called the symmetric group on $X$.
@@ -138,9 +138,9 @@ \subsection{Symmetric Groups}\label{symmetric-groups}}
138138
G = \begin{pmatrix}
139139
1 & 2 & \dots & n \\
140140
\sigma(1) & \sigma(2) & \dots & \sigma(n)
141-
\end{pmatrix} \\
141+
\end{pmatrix}
142142
\end{align*}
143-
\end{notation}
143+
\end{notation}
144144
%
145145
\begin{example} ~\vspace*{-1.5\baselineskip}
146146
\begin{align*}
@@ -153,7 +153,7 @@ \subsection{Symmetric Groups}\label{symmetric-groups}}
153153
2 & 3 & 1 & 4 & 5
154154
\end{pmatrix} \in S_5
155155
\end{align*}
156-
\end{example}
156+
\end{example}
157157

158158
\begin{example}
159159
Composition:
@@ -179,7 +179,7 @@ \subsection{Symmetric Groups}\label{symmetric-groups}}
179179
or:
180180

181181
{\centering \includegraphics{02-symmetric-graphical}}
182-
\end{example}
182+
\end{example}
183183

184184
\hypertarget{small-n}{%
185185
\subsubsection{Small n}\label{small-n}}
@@ -198,30 +198,30 @@ \subsubsection{Small n}\label{small-n}}
198198
S_3 &= \left\{ \begin{pmatrix}
199199
1 & 2 & 3 \\
200200
1 & 2 & 3
201-
\end{pmatrix},
201+
\end{pmatrix},
202202
\begin{pmatrix}
203203
1 & 2 & 3 \\
204204
2 & 3 & 1
205-
\end{pmatrix},
205+
\end{pmatrix},
206206
\begin{pmatrix}
207207
1 & 2 & 3 \\
208208
3 & 1 & 2
209-
\end{pmatrix},
209+
\end{pmatrix},
210210
\begin{pmatrix}
211211
1 & 2 & 3 \\
212212
1 & 3 & 2
213-
\end{pmatrix},
213+
\end{pmatrix},
214214
\begin{pmatrix}
215215
1 & 2 & 3 \\
216216
3 & 2 & 1
217-
\end{pmatrix},
217+
\end{pmatrix},
218218
\begin{pmatrix}
219219
1 & 2 & 3 \\
220220
2 & 1 & 3
221221
\end{pmatrix} \right\} \\
222222
& \cong D_6
223223
\end{align*}
224-
\end{example}
224+
\end{example}
225225

226226
\begin{remark} ~
227227
\begin{enumerate}
@@ -235,7 +235,7 @@ \subsubsection{Small n}\label{small-n}}
235235
\begin{pmatrix}
236236
1 & 2 & 3 & 4 & \dots & n \\
237237
2 & 3 & 1 & 4 & \dots & n
238-
\end{pmatrix},
238+
\end{pmatrix},
239239
\begin{pmatrix}
240240
1 & 2 & 3 & 4 & \dots & n \\
241241
1 & 3 & 2 & 4 & \dots & n
@@ -249,7 +249,7 @@ \subsubsection{Small n}\label{small-n}}
249249
r = \begin{pmatrix}
250250
1 & 2 & 3 & 4 \\
251251
2 & 3 & 4 & 1
252-
\end{pmatrix},\ t =
252+
\end{pmatrix},\ t =
253253
\begin{pmatrix}
254254
1 & 2 & 3 & 4 \\
255255
4 & 3 & 2 & 1
@@ -294,7 +294,7 @@ \subsubsection{Small n}\label{small-n}}
294294
$o(\sigma) = k$, $\sigma$ is like the rotations of k points.
295295
\begin{figure}
296296
\centering \includegraphics[width=0.5\linewidth]{02-sigma-graphical}
297-
\end{figure}
297+
\end{figure}
298298
\item
299299
a 2-cycle is called a \emph{transposition}.
300300
\end{enumerate}
@@ -350,7 +350,7 @@ \subsubsection{Small n}\label{small-n}}
350350
\begin{align*}
351351
\begin{pmatrix}1 & 2 & 3\end{pmatrix} \begin{pmatrix}2 & 3\end{pmatrix} &= \begin{pmatrix}1 & 2\end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \\
352352
&= \begin{pmatrix}1 & 2\end{pmatrix} \text{ suppress 1-cycles.} \\
353-
\begin{pmatrix}2 & 3\end{pmatrix} \begin{pmatrix}1 & 2 & 3\end{pmatrix} &= \begin{pmatrix}1 & 3\end{pmatrix}
353+
\begin{pmatrix}2 & 3\end{pmatrix} \begin{pmatrix}1 & 2 & 3\end{pmatrix} &= \begin{pmatrix}1 & 3\end{pmatrix}
354354
\end{align*}
355355
\end{example}
356356

@@ -498,7 +498,7 @@ \subsubsection{Small n}\label{small-n}}
498498
\node(C31) [left of=C32] {$\langle r \rangle$};
499499
\node(C33) [below right of=A4] {$\langle rt \rangle$};
500500
\node(C34) [right of=C33] {$\langle r^2t \rangle$};
501-
501+
502502
\node(1) [below=3cm,at=(A4.south)] {$\left\{e\right\}$};
503503
\draw(A4) -- (C31);
504504
\draw(A4) -- (C32);
@@ -508,7 +508,7 @@ \subsubsection{Small n}\label{small-n}}
508508
\draw(C32) -- (1);
509509
\draw(C33) -- (1);
510510
\draw(C34) -- (1);
511-
\end{tikzpicture}
511+
\end{tikzpicture}
512512
\end{center}
513513

514514
We put the largest subgroups at the top and work our way down.
@@ -564,7 +564,7 @@ \subsubsection{Small n}\label{small-n}}
564564

565565
\mathitem
566566
\begin{align*}
567-
\operatorname{sgn}(\sigma) &= 1 = \operatorname{sgn}(\rho) \\
567+
\operatorname{sgn}(\sigma) &= 1 = \operatorname{sgn}(\rho) \\
568568
\implies \operatorname{sgn}(\sigma \rho) &= \operatorname{sgn}(\sigma) \operatorname{sgn}(\rho) \\
569569
&= 1
570570
\end{align*} by Theorem \ref{thm:two}

Groups/03-cosets.tex

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
144144

145145
The $k$ in \nameref{thm:three} is $| G : H |$, giving \cref{rem:11-i}.
146146
`The hard part of this proof is to prove that the left cosets partition G
147-
and have the same size.
147+
and have the same size.
148148
If you are asked to prove Lagrange’s theorem in exams,
149149
that is what you actually have to prove.'
150150
\begin{center}\rule{\linewidth}{0.5pt}\end{center}
@@ -182,12 +182,12 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
182182
\end{proof}
183183

184184
\begin{definition}[Euler's totient function]
185-
Let $n \in \mathbb{N}$ and $\phi(n) = \left| \left\{ 1 \leq a \leq n : \operatorname{hcf}(a, n) = 1 \right\} \right|$.
186-
\end{definition}
185+
Let $n \in \mathbb{N}$ and $\phi(n) = \left| \left\{ 1 \leq a \leq n : \operatorname{hcf}(a, n) = 1 \right\} \right|$.
186+
\end{definition}
187187

188188
\begin{example}
189189
$\phi(12) = \left| \left\{ 1, 5, 7, 11 \right\} \right| = 4$.
190-
\end{example}
190+
\end{example}
191191

192192
\begin{theorem}[Fermat-Euler Theorem]
193193
\protect\hypertarget{thm:four}{}\label{thm:four}Let $n \in \mathbb{N},\ a \in \mathbb{Z}$ and $\operatorname{hcf}(a, n) = 1$.\\
@@ -203,7 +203,7 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
203203

204204
\begin{notation}
205205
$n \in \mathbb{Z}$ then $\overline{u} \in R_n$ such that $u \equiv \overline{u} \pmod n$.
206-
\end{notation}
206+
\end{notation}
207207

208208
Define $\times_n$ to be multiplication mod $n$.\\
209209
Claim: $(R_n^*, \times_n)$ is a group.
@@ -212,7 +212,7 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
212212
\begin{align*}
213213
\operatorname{hcf}(a, n) &= 1 = \operatorname{hcf}(b, n) \\
214214
\implies \operatorname{hcf}(ab, n) &= 1 \\
215-
\implies \operatorname{hcf}(\overline{ab}, n) &= 1 \\
215+
\implies \operatorname{hcf}(\overline{ab}, n) &= 1
216216
\end{align*}
217217

218218
Identity = 1
@@ -229,7 +229,7 @@ \section{Cosets and Lagrange}\label{cosets-and-lagrange}}
229229
\begin{proof}
230230
Note $|R_n^*| = \phi(n)$.
231231
\begin{align*}
232-
a &\equiv \overline{a} \pmod n,\ \overline{a} \in R_n^*
232+
a &\equiv \overline{a} \pmod n,\ \overline{a} \in R_n^*
233233
\intertext{By \nameref{cor:two}}
234234
\overline{a}^{\phi(n)} &= \overline{a}^{|R_n^*|} = 1 \in R_n^* \\
235235
\implies a^{\phi(n)} &\equiv 1 \pmod n

0 commit comments

Comments
 (0)