Skip to content

Commit 02804cb

Browse files
committed
LST: Fix typos
1 parent 575c094 commit 02804cb

File tree

4 files changed

+30
-23
lines changed

4 files changed

+30
-23
lines changed

AFL_updated.pdf

19.7 KB
Binary file not shown.

LogicAndSetTheory/05_set_theory.tex

Lines changed: 21 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -277,7 +277,8 @@ \subsection{Transitive sets}
277277
\begin{proof}
278278
NTS that $x \subseteq \omega \; \forall x \in \omega$. \\
279279
Form the set $z = \{y \in \omega : y \subseteq \omega\}$ by (Sep).
280-
Check $z$ is a successor set, so $z = \omega$.
280+
Check $z$ is a successor set, so $z = \omega$, i.e. $\omega$ transitive.
281+
281282
Similarly, $\{x \in \omega : \text{`$x$ is transitive'}\}$ is also a successor set ($\cup x^+ = x$) so it is $\omega$.
282283
So every element of $\omega$ is a transitive set.
283284
\end{proof}
@@ -295,7 +296,7 @@ \subsection{Transitive sets}
295296
This holds as any intersection of transitive sets is transitive.
296297
\end{remark}
297298

298-
\underline{Idea}: If $x \subseteq y$ and y transitive then $\bigcup x \subseteq y$ so $\bigcup \bigcup x \subseteq y$, $\bigcup \bigcup \bigcup x \subseteq y$, \dots \\
299+
\underline{Idea}: If $x \subseteq y$ and $y$ transitive then $\bigcup x \subseteq y$ so $\bigcup \bigcup x \subseteq y$, $\bigcup \bigcup \bigcup x \subseteq y$, \dots \\
299300
We want to form $\bigcup \{x, \bigcup x, \bigcup \bigcup x, \dots\}$, this is a set by (Rep).
300301
We need a function-class $0 \mapsto x$, $1 \mapsto \bigcup x$, $2 \mapsto \bigcup \bigcup x$, \dots
301302

@@ -327,10 +328,11 @@ \subsection{Transitive sets}
327328
Also by (Un) we can form $t = \bigcup w$.
328329

329330
Then $x \in t$, since $x \in w$ ($\{(0, x)\}$ is an attempt).
330-
Given $a \in t$, we have $z \in w$, $a \in z$.
331+
Given $a \in t$, we have $a \in z$ for some $z \in w$.
331332
Then there's an attempt $f$ and $n \in w$ s.t. $z = f(n)$. \\
332333
By $(\ast\ast)$ there's an attempt $g$ with $n^+ \in \dom g$.
333-
Then $n \in \dom g$ so $\bigcup z = \bigcup f(n) = \bigcup g(n)$ by $(\ast)$ and $\bigcup g(n) = g(n^+) \in w$, hence $a \in t$.
334+
Then $n \in \dom g$ so $\bigcup z = \bigcup f(n) = \bigcup g(n)$ by $(\ast)$ and $\bigcup g(n) = g(n^+) \in w$.
335+
Thus for any $b \in a$, $b \in \cup z \in w$ so $b \in t$, i.e. $t$ transitive.
334336
\end{proof}
335337

336338
Transitive closures allow us to pass from the large universe of sets, which is not a set itself, into a smaller world which is a set closed under $\in$ that contains the relevant sets in question.
@@ -356,14 +358,14 @@ \subsection{\texorpdfstring{$\in$}{∈}-induction}
356358
If $y \in z$, then $y \in t$ (as $t$ transitive) and $y \notin u$ (by minimality), so $p(y)$.
357359
By assumption $p(z)$ holds \Lightning\ of $z \in u$.
358360
\end{proof}
359-
The name of this theorem should be read `epsilon-induction', even though the membership relation is denoted $\in$ and not $\epsilon$ or $\varepsilon$.
361+
The name of this theorem should be read `epsilon-induction', even though the membership relation is denoted $\in$ and not $\epsilon$.
360362

361363
The principle of $\in$-induction is equivalent to the axiom of foundation (Fnd) in the presence of the other axioms of $\mathsf{ZF}$.
362364

363-
\underline{Clever Idea}: We say that $x$ is \vocab{regular} if $(\forall y)(x \in y \implies y \text{ has a $\in$-minimal element})$.
365+
\underline{Clever Idea}: We say that $x$ is \vocab{regular} if $(\forall y)(x \in y \implies y \text{ has a $\in$-minimal element})$ (this defn is the clever part).
364366
The axiom of foundation is equivalent to the assertion that every set is regular.
365367
Given $\in$-induction, we can prove every set is regular.
366-
Suppose $(\forall y \in x)(y \text{ is regular})$; we need to show $x$ is regular.
368+
Fix some $x$ and suppose $(\forall y \in x)(y \text{ is regular})$; we need to show $x$ is regular.
367369
For a set $z$ with $x \in z$, if $x$ is minimal in $z$, $x$ is clearly regular as required.
368370
If $x$ is not minimal in $z$, there exists $y \in x$ s.t. $y \in z$.
369371
So $z$ has a minimal element as $y$ is regular.
@@ -430,7 +432,7 @@ \subsection{Well-founded relations}
430432
\end{example}
431433

432434
\begin{definition}[Local]
433-
$r$ is \vocab{local} if $(\forall x)(\forall y)(\exists z)(z r x \wedge z r y\footnote{$zry = r(z, y)$})$, i.e. the $r$-predecessors of $x$ form a set.
435+
$r$ is \vocab{local} if $(\forall x)(\exists y)(\forall z)(z \in y \wedge z r x\footnote{$zrx = r(z, x)$})$, i.e. the $r$-predecessors of $x$ form a set.
434436
\end{definition}
435437

436438
\begin{example}
@@ -453,6 +455,7 @@ \subsection{Well-founded relations}
453455
(\forall x \in a)(\forall y \in a)((\forall z \in a)(zrx \Leftrightarrow zry) \implies x = y)
454456
\end{align*}
455457
\end{definition}
458+
This is just the axiom of extensionality applied to the relation $r$.
456459

457460
% Therefore, $p$-induction and $p$-recursion hold for all relation-classes $p$ that are well-founded and local.
458461
% In particular, if $r$ is a well-founded relation on a set $a$, it is clearly local and hence we have $r$-induction and $r$-recursion.
@@ -478,11 +481,11 @@ \subsection{Well-founded relations}
478481

479482
\begin{proof}
480483
By $r$-recursion on $a$, there's a function class $f$ s.t. $\forall x \in a$, $f(x) = \{f(y) : y \in a \wedge y r x \}$.
481-
Note that $f$ i s a function, not just a fcn class since $\qty{(x, f(x)) : x \in a}$ is a set by (Rep).
484+
Note that $f$ is a function, not just a fcn class since $\qty{(x, f(x)) : x \in a}$ is a set by (Rep).
482485

483486
Then $b = \qty{f(x) : x \in a}$ is a set by (Rep). \\
484487
$b$ is transitive: Let $z \in b$ and $w \in z$.
485-
There's $x \in a$ s.t. $z = f(x)$, and so $y \in a$ s.t. $y r x$ and $w = f(y) \in b$.
488+
There's $x \in a$ s.t. $z = f(x)$, and so a $y \in a$ s.t. $y r x$ and $w = f(y) \in b$.
486489

487490
Clearly $f$ surjective and $\forall x, y \in a$, $xry \implies f(x) \in f(y)$.
488491

@@ -538,18 +541,22 @@ \subsection{Well-founded relations}
538541
\begin{remark}
539542
(2) says that $\alpha$ really \underline{is} the set of ordinals $< \alpha$; \\
540543
(3) says that $\in$ linearly orders the class $ON$; \\
541-
(4) resolves the class of notation $x^+$ in section $2$ and $5$; \\
544+
(4) resolves the clash of notation $x^+$ in section $2$ and $5$.
545+
According to the definition in section $2$, $\alpha^+$ is the unique (up to order-isomorphism) well-ordered set that consists of $\alpha$ as a proper initial segment and one extra element that is a maximum.
546+
By Mostowski, this well-ordered set is order-isomorpic to a unique ordinal (its order-type).
547+
(4) shows that this ordinal is the successor of the set $\alpha$ as defined in this section.
548+
In particular, this shows that the successor of an ordinal is an ordinal; \\
542549
(5) now shows that any set of well-ordered sets has an upper bound.
543550
\end{remark}
544551

545552
\begin{proof}
546553
\begin{enumerate}
547554
\item Let $\gamma \in \alpha$.
548-
Then $\gamma \subseteq \alpha$ ($\alpha$ is transitive) and hence $\in$ linearly orders $\gamma$.
555+
Then $\gamma \subseteq \alpha$ ($\alpha$ is transitive) and hence $\in$ linearly orders $\gamma$\footnote{$\in$ linearly orders $\alpha$ and $\gamma$ a subset so $\eval{\in}_\gamma$ linearly orders it.}.
549556
Given $\eta \in \delta$, $\delta \in \gamma$ then $\delta \in \alpha$ and so $\eta \in \alpha$ ($\alpha$ is transitive).
550-
Since $\in$ is transitive on $\alpha$, we have $\eta \in \gamma$.
557+
Since $\in$ is transitive\footnote{As $\in$ a well ordering.} on $\alpha$, we have $\eta \in \gamma$.
551558
So $\gamma$ is a transitive set, so $\gamma$ is an ordinal.
552-
\item If $\beta \in \alpha$, then $I_\beta = \qty{\gamma \in \alpha : \gamma \in \beta} = \beta$, so $\beta < \alpha$.
559+
\item If $\beta \in \alpha$, then $I_\beta = \qty{\gamma \in \alpha : \gamma \in\footnote{We are well-ordered by $\in$ not $<$ so we use $\in$ to define initial segments} \beta} = \beta$ as $\beta \subset \alpha$ by transitivity of $\alpha$, so $\beta < \alpha$.
553560
Any proper i.s. of $\alpha$ is of the form $I_\gamma$ for some $\gamma \in \alpha$.
554561
So $\beta < \alpha \implies \beta \in \alpha$.
555562
\item Done by (2)

LogicAndSetTheory/06_cardinals.tex

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -60,13 +60,13 @@ \subsection{The hierarchy of alephs}
6060

6161
Conversely, let $\delta$ be an infinite initial ordinal.
6262
We need $\delta = \omega_\alpha$ for some $\alpha$. \\
63-
Easy induction show that $\alpha \leq \omega_\alpha \; \forall a$ so $\delta < \omega_{\delta + 1}$.
63+
Easy induction show that $\alpha \leq \omega_\alpha \; \forall \alpha$ so $\delta < \omega_{\delta + 1}$.
6464
Take the least $\alpha$ s.t. $\delta < \omega_\alpha$.
65-
Then $\alpha \neq 0$ and $a$ is not a limit, o/w $\delta < \omega$ for some $\gamma < \alpha$ \Lightning. \\
65+
Then $\alpha \neq 0$ and $\alpha$ is not a limit, o/w $\delta < \omega_\gamma$ for some $\gamma < \alpha$ \Lightning. \\
6666
So $\alpha = \beta^+$ for some $\beta$.
6767
So we have $\omega_\beta \leq \delta < \omega_{\beta^+} = \gamma(\omega_\beta)$.
6868
Hence $\delta \hookrightarrow \omega_\beta$ and $\omega_\beta \hookrightarrow \delta$.
69-
So by Schr\"oder-Bernstein, $\omega_\beta \equiv \delta$, so $\delta = \omega_\beta$ as $\delta$ is initial.
69+
So by Schr\"oder-Bernstein, $\omega_\beta \equiv \delta$\footnote{As $\gamma(\omega_\beta)$ minimal order which doesn't inject into $\omega_\beta$}, so $\delta = \omega_\beta$ as $\delta$ is initial.
7070
\end{proof}
7171

7272
\begin{definition}[Aleph Numbers]
@@ -93,7 +93,7 @@ \subsection{Cardinal Arithmetic}
9393
Let $m, n$ be cardinals.
9494
Then,
9595
\begin{enumerate}
96-
\item $m + n = \mathrm{card}\qty(M \amalg N)$;
96+
\item $m + n = \mathrm{card}\qty(M \sqcup N)$;
9797
\item $m \cdot n = \mathrm{card}(M \times N)$;
9898
\item $m^n = \mathrm{card}(M^N)$;
9999
\end{enumerate}
@@ -103,7 +103,7 @@ \subsection{Cardinal Arithmetic}
103103
\underline{Some Properties} \\
104104
$m + n = n + m$ ($M \sqcup N \equiv N \sqcup M$) \\
105105
$m \cdot n = n \cdot m$ ($M \times N \equiv N \times M$) \\
106-
$m (n + p) = mn + mp$ ($M \times (N \sqcup P) \equiv M \times N \sqcup M \times P$)
106+
$m (n + p) = mn + mp$ ($M \times (N \sqcup P) \equiv M \times N \sqcup M \times P$) \\
107107
$(m^n)^p = m^{np}$, $m^n m^p = m^{n + p}$, $m^p \cdot n^p = (mn)^p$ (not true for ordinals though)
108108

109109
$m \leq n \implies m + p \leq n + p$, $mp \leq np$, $m^p \leq n^p$ etc.
@@ -161,6 +161,8 @@ \subsection{Cardinal Arithmetic}
161161
\[ \aleph_\beta \leq \aleph_\alpha + \aleph_\beta \leq 2 \cdot \aleph_\beta \leq \aleph_\alpha \aleph_\beta \leq \aleph_\beta^2 = \aleph_\beta \]
162162
\end{proof}
163163

164+
Hence, for example, $X \sqcup X$ bijects with $X$ for any infinite set $X$.
165+
164166
\begin{note}
165167
In ZFC one can define more general infinite sums and products of cardinals. In the definitions below, as earlier, lower-case letters denote cardinals and upper-case letters denote sets with cardinality the corresponding lower-case letter.
166168
\end{note}
@@ -193,12 +195,10 @@ \subsection{Cardinal Arithmetic}
193195
\begin{align*}
194196
2^{\aleph_0}=\aleph_1
195197
\end{align*}
196-
P. Cohen proved in the 1960 s that if $\mathrm{ZFC}$ is consistent, then so are $\mathrm{ZFC}+\mathrm{CH}$ and $\mathrm{ZFC}+\neg \mathrm{CH}$. So $\mathrm{CH}$ is independent of $\mathrm{ZFC}$.
197-
198-
Hence, for example, $X \amalg X$ bijects with $X$ for any infinite set $X$.
198+
P. Cohen proved in the 1960s that if $\mathrm{ZFC}$ is consistent, then so are $\mathrm{ZFC}+\mathrm{CH}$ and $\mathrm{ZFC}+\neg \mathrm{CH}$. So $\mathrm{CH}$ is independent of $\mathrm{ZFC}$.
199199

200+
Extra stuff on cardinal exponentiation: \\
200201
Cardinal exponentiation is not as simple as addition and multiplication.
201202
For instance, in $\mathsf{ZF}$, $2^{\aleph_0}$ need not even be an aleph number, for instance if $\mathbb R$ is not well-orderable.
202-
In $\mathsf{ZFC}$, the statement $2^{\aleph_0} = \aleph_1$ is independent of the axioms; this is called the \vocab{continuum hypothesis}.
203203
$\mathsf{ZFC}$ does not even decide if $2^{\aleph_0} < 2^{\aleph_1}$.
204204
Even today, not all implications about cardinal exponentiation (such as $\aleph_\alpha^{\aleph_\beta}$) are known.
2.07 KB
Binary file not shown.

0 commit comments

Comments
 (0)