@@ -14,7 +14,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
14
14
15
15
We now define the axioms (there are 2 + 4 + 3 axioms) of $ \mathsf {ZF}$ set theory.
16
16
\begin {enumerate }
17
- \item \vocab {Axiom of Existensionality (Ext)} \\
17
+ \item \vocab {Axiom of Extensionality (Ext)} \\
18
18
`If two sets have the same members, then they are equal'
19
19
\begin {align* }
20
20
(\forall x)(\forall y)((\forall z)(z \in x \Leftrightarrow z \in y) \implies x = y)
@@ -46,6 +46,10 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
46
46
\begin {example }
47
47
For instance, $ p(\varnothing )$ is the sentence $ (\exists x)((\forall y)(\neg y \in x) \wedge p(x))$ .
48
48
\end {example }
49
+
50
+ Strictly speaking, this axiom is not needed as it follows from (Sep).
51
+ Indeed, in a structure $ V$ , we can pick any set $ x$ and form the set $ \{ y \in x : \neg (y = y)\} $ by (Sep).
52
+ However, if in first-order logic we allow the empty set as a structure, then (Emp) is needed (or some axiom asserting the existence of some set).
49
53
\item \vocab {Pair-set Axiom (Pair)} \\
50
54
`We can form unordered pairs'
51
55
\begin {align* }
@@ -148,7 +152,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
148
152
149
153
We can define abbreviations: \\
150
154
`` $ x$ is finite'' for $ (\exists y)(y \in \omega \wedge (\exists f)(f : x \to y \wedge \text {`$ f$ is bijective'}))$ ; \\
151
- `` $ x$ is countable'' for $ (\exists f)(f : x \to \omega \wedge \text {`$ f$ in injective'})$ .
155
+ `` $ x$ is countable'' for $ (\exists f)(f : x \to \omega \wedge \text {`$ f$ is injective'})$ .
152
156
153
157
\item \vocab {Axiom of Replacement (Rep)} \\
154
158
(Inf) says that there exist sets containing $ 0 , 1 , 2 , 3 , \dots $
@@ -171,7 +175,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
171
175
\begin {example } ~\vspace *{-1.5\baselineskip }
172
176
\begin {itemize }
173
177
\item For instance, $ V$ is a class, taking $ p$ to be $ x = x$ .
174
- \item The set of sets of size $ 1 $ in a class, e.g. take $ p$ to be $ (\exists y)(x = \{ y\} )$
178
+ \item The set of sets of size $ 1 $ is a class, e.g. take $ p$ to be $ (\exists y)(x = \{ y\} )$
175
179
\item There is a class of infinite sets, taking $ p$ to be `$ x$ is not finite'.
176
180
\item For any $ t \in V$ , the collection of $ x$ with $ t \in x$ is a class; here, $ t$ is a parameter to the class.
177
181
\item Every set $ y \in V$ is a class by setting $ p$ to be $ x \in y$ .
0 commit comments