Skip to content

Commit 575c094

Browse files
committed
LST: Fix typos
1 parent b11c8c6 commit 575c094

File tree

2 files changed

+7
-3
lines changed

2 files changed

+7
-3
lines changed

LogicAndSetTheory/05_set_theory.tex

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
1414

1515
We now define the axioms (there are 2 + 4 + 3 axioms) of $\mathsf{ZF}$ set theory.
1616
\begin{enumerate}
17-
\item \vocab{Axiom of Existensionality (Ext)} \\
17+
\item \vocab{Axiom of Extensionality (Ext)} \\
1818
`If two sets have the same members, then they are equal'
1919
\begin{align*}
2020
(\forall x)(\forall y)((\forall z)(z \in x \Leftrightarrow z \in y) \implies x = y)
@@ -46,6 +46,10 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
4646
\begin{example}
4747
For instance, $p(\varnothing)$ is the sentence $(\exists x)((\forall y)(\neg y \in x) \wedge p(x))$.
4848
\end{example}
49+
50+
Strictly speaking, this axiom is not needed as it follows from (Sep).
51+
Indeed, in a structure $V$, we can pick any set $x$ and form the set $\{y \in x : \neg (y = y)\}$ by (Sep).
52+
However, if in first-order logic we allow the empty set as a structure, then (Emp) is needed (or some axiom asserting the existence of some set).
4953
\item \vocab{Pair-set Axiom (Pair)} \\
5054
`We can form unordered pairs'
5155
\begin{align*}
@@ -148,7 +152,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
148152

149153
We can define abbreviations: \\
150154
``$x$ is finite'' for $(\exists y)(y \in \omega \wedge (\exists f)(f : x \to y \wedge \text{`$f$ is bijective'}))$; \\
151-
``$x$ is countable'' for $(\exists f)(f : x \to \omega \wedge \text{`$f$ in injective'})$.
155+
``$x$ is countable'' for $(\exists f)(f : x \to \omega \wedge \text{`$f$ is injective'})$.
152156

153157
\item \vocab{Axiom of Replacement (Rep)} \\
154158
(Inf) says that there exist sets containing $0, 1, 2, 3, \dots$
@@ -171,7 +175,7 @@ \subsection{Axioms of \texorpdfstring{$\mathsf{ZF}$}{ZF}}
171175
\begin{example} ~\vspace*{-1.5\baselineskip}
172176
\begin{itemize}
173177
\item For instance, $V$ is a class, taking $p$ to be $x = x$.
174-
\item The set of sets of size $1$ in a class, e.g. take $p$ to be $(\exists y)(x = \{y\})$
178+
\item The set of sets of size $1$ is a class, e.g. take $p$ to be $(\exists y)(x = \{y\})$
175179
\item There is a class of infinite sets, taking $p$ to be `$x$ is not finite'.
176180
\item For any $t \in V$, the collection of $x$ with $t \in x$ is a class; here, $t$ is a parameter to the class.
177181
\item Every set $y \in V$ is a class by setting $p$ to be $x \in y$.
1.16 KB
Binary file not shown.

0 commit comments

Comments
 (0)