For recreational and educational purposes. Creating easier access to some financial and economic data.
This library is an ongoing project designed to facilitate access to financial and economic data. It tries to cover potentially useful or interesting data points but unfortunately some functions will only return single point data which however could be aggregated over time to construct a limited time series. On the other hand, some functions that retrieve large amounts of data or depending on the data source will take some time to run. See the function index for more information on issues of data availability and relative run time.
The company fundamentals module includes functions to retrive data from Yahoo Finance
, MarketWatch
, The Motley Fool
, Finviz
and Macrotrends
. The price data module retrieves data from Yahoo Finance
and CBOE
. The economic data is collected from the OECD database
at this point and the news module enables historical news headline collection from the FT
, NYT
, WSJ
, Barrons
, Seeking Alpha
and Reuters
based on keyword searches. The library also provides a function to get all Nasdaq-listed stock tickers as well as worldwide stock symbols (these need some cleaning still once retrieved).
If there are any issues, ideas or recommendations please feel free to reach out.
Changes for v0.13
Changes for v0.12
Changes for v0.11
price_data
moduleeconomic_data
module85.\*.\*\*\*\*.\*\*\*
(had included an older Windows Chromedriver before)
To do list:
- Refactor the news scrape..
- Improve EIA data representation ( same column names for PADDs or crude and products across different series for easier cross reference; add more granularity to some functions ), add other EIA data sets
- Add EIA bulk download option and support EIA API
- Add USDA data, CFTC COT and potentially add weather data sources (e.g. heating degree days, cooling degree days in NE US)
- Add social media data (Twitter, Stocktwits, Weibo, Reddit WSB?)
- Add async requests, multiple/batch download options, proxies..
- Installation
- Function index
- Company fundamental data
- Price data
- Economic data OECD data EIA petroleum data
- Weekly balance
- Crude oil supply
- Refining and processing
- Imports and exports
- Stocks
- Consumption and sales
- News data
- Other data
- Sources
- License
Python3 is required. Google Chrome version 85.*.****.***
or higher is required for some functions involving Selenium (can be found here).
Note that Selenium may not be able to use Chrome in combination with Firewalls and the functions may fail to execute..
$ pip install finpie
beautifulsoup4>=4.9.1
dask>=2.11.0
numpy>=1.18.2
pandas>=1.0.1
requests>=2.22.0
requests_html>=0.10.0
selenium>=3.141.0
tqdm>=4.32.1
Output | Data Output | Runtime |
---|---|---|
Company Fundamentals | ||
fd = Fundamentals( ticker, source, freq ) | ||
Financial statements | ||
up to 2005 | Slow, depends on source | |
up to 2005 | Slow, depends on source | |
up to 2005 | Slow, depends on source | |
Financial ratios and key metrics | ||
up to 2005 | Slow | |
Most recent data | Fast | |
Earnings and revenue estimates | ||
Most recent data | Fast | |
Recent trend | Fast | |
4 quarters | Fast | |
Most recent data | Fast | |
Most recent data | Fast | |
Earnings call transcripts | ||
up to 2018 | Slow | |
Insider transactions and analyst ratings | ||
Most recent data | Fast | |
Most recent data | Fast | |
ESG data | ||
Most recent data | Fast | |
Most recent data | Fast | |
Company profile | ||
Most recent data | Fast | |
Most recent data | Fast | |
Price data | ||
Timeseries | Fast | |
Most recent data | Fast | |
Most recent data | Fast | |
Timeseries | Very slow | |
Any date | Fast | |
Economic data | ||
OECD Data | ||
oecd = OecdData( country_code, **args ) | ||
Composite leading indicators | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Financial indicators | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Trade indicators | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Labour market indicators | ||
Timeseries | Not that slow | |
Price indices | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Business tendency and consumer opinion | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
National accounts | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Production and sales | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
OECD Business Tendency Survey | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
OECD Balance of Payments | ||
Current Account | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Financial account | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
EIA Data | ||
eia = EiaData() | ||
Timeseries | Not that slow | |
Weekly balances | ||
Timeseries | Not that slow | |
Most recent data | Not that slow | |
Crude oil supply | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Refining and Processing | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Imports and Exports | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Stocks | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Consumption and sales | ||
Timeseries | Not that slow | |
Timeseries | Not that slow | |
Timeseries | Not that slow | |
News data | ||
news = NewsData( ticker, keyword_string ) | ||
Timeseries | Slow | |
Timeseries | Very slow | |
Timeseries | Very slow | |
Timeseries | Very slow | |
Timeseries | Very slow | |
Timeseries | Slow | |
Timeseries | Very slow | |
Other data | ||
List of stock tickers | Fast | |
List of stock tickers | Slow |
The functions below enable you to download financial statements, valuation ratios and key financial statistics as well as analyst ratings, insider transactions, ESG scores and company profiles.
The data is pulled from Yahoo Finance
, Marketwatch.com
, Finviz.com
and Macrotrends.com
. The macrotrends scrape runs on Selenium and the website might sometimes fail to load. The function may just need to be re-run to work (assuming the ticker is available on the website). As a remedy it might sometimes help to set macrotrends().head = True
which will then open a browser window while scraping the data.
import finpie # or import finpie.fundamental_data
# default:
# source = 'macrotrends'
# freq = 'A'
fd = finpie.Fundamentals(ticker, source = 'macrotrends', freq = 'A')
# source options for financial statements and key metrics:
# 'yahoo', 'marketwatch', 'macrotrends'
# freq options:
# 'A', 'Q'
# default key metrics for marketwatch and macrotrends come from Finviz
- Returns a dataframe with income statements from either Macrotrends.com, Yahoo Finance or Marketwatch. Default source is 'macrotrends'.
- Class Arguments:
-
ticker
: valid company ticker -
source
: 'yahoo', 'marketwatch', 'macrotrends', default: 'macrotrends' -
freq
: 'A' (annual data), 'Q' (quarterly data), default: 'A'
Default Example
fd = finpie.Fundamentals('AAPL', freq = 'A')
fd.income_statement()
revenue | cost_of_goods_sold | gross_profit | research_and_development_expenses | sganda_expenses | other_operating_income_or_expenses | operating_expenses | operating_income | total_nonoperating_income_to_expense | pretax_income | income_taxes | income_after_taxes | other_income | income_from_continuous_operations | income_from_discontinued_operations | net_income | ebitda | ebit | basic_shares_outstanding | shares_outstanding | basic_eps | eps__earnings_per_share | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||
2005-09-30 | 13931.0 | 9889.0 | 4042.0 | 535.0 | 1864.0 | NaN | 12288.0 | 1643.0 | 165.0 | 1808.0 | 480.0 | 1328.0 | NaN | 1328.0 | NaN | 1328.0 | 1822.0 | 1643.0 | 22636.0 | 23993.0 | 0.06 | 0.06 |
2006-09-30 | 19315.0 | 13717.0 | 5598.0 | 712.0 | 2433.0 | NaN | 16862.0 | 2453.0 | 365.0 | 2818.0 | 829.0 | 1989.0 | NaN | 1989.0 | NaN | 1989.0 | 2678.0 | 2453.0 | 23634.0 | 24571.0 | 0.08 | 0.08 |
2007-09-30 | 24578.0 | 16426.0 | 8152.0 | 782.0 | 2963.0 | NaN | 20171.0 | 4407.0 | 599.0 | 5006.0 | 1511.0 | 3495.0 | NaN | 3495.0 | NaN | 3495.0 | 4734.0 | 4407.0 | 24209.0 | 24900.0 | 0.14 | 0.14 |
2008-09-30 | 37491.0 | 24294.0 | 13197.0 | 1109.0 | 3761.0 | NaN | 29164.0 | 8327.0 | 620.0 | 8947.0 | 2828.0 | 6119.0 | NaN | 6119.0 | NaN | 6119.0 | 8823.0 | 8327.0 | 24685.0 | 25260.0 | 0.25 | 0.24 |
2009-09-30 | 42905.0 | 25683.0 | 17222.0 | 1333.0 | 4149.0 | NaN | 31165.0 | 11740.0 | 326.0 | 12066.0 | 3831.0 | 8235.0 | NaN | 8235.0 | NaN | 8235.0 | 12474.0 | 11740.0 | 25004.0 | 25396.0 | 0.33 | 0.32 |
Yahoo Example
fd = finpie.Fundamentals('AAPL', source = 'yahoo') # no frequency choice for Yahoo...
fd.income_statement()
total_revenue | cost_of_revenue | gross_profit | operating_expense | operating_income | net_non_operating_interest_income_expense | other_income_expense | pretax_income | tax_provision | net_income_common_stockholders | diluted_ni_available_to_com_stockholders | basic_eps | diluted_eps | basic_average_shares | diluted_average_shares | total_operating_income_as_reported | total_expenses | net_income_from_continuing_and_discontinued_operation | normalized_income | interest_income | interest_expense | net_interest_income | ebit | ebitda | reconciled_cost_of_revenue | reconciled_depreciation | net_income_from_continuing_operation_net_minority_interest | normalized_ebitda | tax_rate_for_calcs | tax_effect_of_unusual_items | ticker | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||
2019-09-30 | 260174000 | 161782000 | 98392000 | 34462000 | 63930000 | 1385000 | 422000 | 65737000 | 10481000 | 55256000 | 55256000 | 0.003 | 0.003 | 18471336 | 18595652 | 63930000 | 196244000 | 55256000 | 55256000 | 4961000 | 3576000 | 1385000 | 69313000 | NaN | 161782000 | 12547000 | 55256000 | 81860000 | 0 | 0 | AAPL |
2018-09-30 | 265595000 | 163756000 | 101839000 | 30941000 | 70898000 | 2446000 | -441000 | 72903000 | 13372000 | 59531000 | 59531000 | 0.003 | 0.003 | 19821508 | 20000436 | 70898000 | 194697000 | 59531000 | 59531000 | 5686000 | 3240000 | 2446000 | 76143000 | NaN | 163756000 | 10903000 | 59531000 | 87046000 | 0 | 0 | AAPL |
2017-09-30 | 229234000 | 141048000 | 88186000 | 26842000 | 61344000 | 2878000 | -133000 | 64089000 | 15738000 | 48351000 | 48351000 | 0.0023 | 0.0023 | 20868968 | 21006768 | 61344000 | 167890000 | 48351000 | 48351000 | 5201000 | 2323000 | 2878000 | 66412000 | NaN | 141048000 | 10157000 | 48351000 | 76569000 | 0 | 0 | AAPL |
Marketwatch Example
fd = Fundamentals('AAPL', source = 'marketwatch', freq = 'Q')
fd.income_statement()
sales_revenue | sales_growth | cost_of_goods_sold_(cogs)_incl_danda | cogs_excluding_danda | depreciation_and_amortization_expense | depreciation | amortization_of_intangibles | cogs_growth | gross_income | gross_income_growth | gross_profit_margin | sganda_expense | research_and_development | other_sganda | sga_growth | other_operating_expense | unusual_expense | ebit_after_unusual_expense | non_operating_income_expense | non-operating_interest_income | equity_in_affiliates_(pretax) | interest_expense | interest_expense_growth | gross_interest_expense | interest_capitalized | pretax_income | pretax_income_growth | pretax_margin | income_tax | income_tax_-_current_domestic | income_tax_-_current_foreign | income_tax_-_deferred_domestic | income_tax_-_deferred_foreign | income_tax_credits | equity_in_affiliates | other_after_tax_income_(expense) | consolidated_net_income | minority_interest_expense | net_income | net_income_growth | net_margin_growth | extraordinaries_and_discontinued_operations | extra_items_and_gain_loss_sale_of_assets | cumulative_effect_-_accounting_chg | discontinued_operations | net_income_after_extraordinaries | preferred_dividends | net_income_available_to_common | eps_(basic) | eps_(basic)_growth | basic_shares_outstanding | eps_(diluted) | eps_(diluted)_growth | diluted_shares_outstanding | ebitda | ebitda_growth | ebitda_margin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2019-06-30 | 5.374e+10 | nan | 3.357e+10 | 3.064e+10 | 2.93e+09 | 2.93e+09 | nan | nan | 2.017e+10 | nan | nan | 8.68e+09 | 4.26e+09 | 4.43e+09 | nan | nan | nan | nan | 9.8e+07 | 1.19e+09 | nan | 8.66e+08 | nan | 8.66e+08 | nan | 1.191e+10 | nan | nan | 1.87e+09 | nan | nan | nan | nan | nan | nan | nan | 1.004e+10 | nan | 1.004e+10 | nan | nan | nan | nan | nan | nan | 1.004e+10 | nan | 1.004e+10 | 0.55 | nan | 1.828e+10 | 0.55 | nan | 1.841e+10 | 1.442e+10 | nan | nan |
2019-09-30 | 6.394e+10 | 0.1897 | 3.977e+10 | 3.784e+10 | 1.93e+09 | 1.93e+09 | nan | 0.1848 | 2.417e+10 | 0.1979 | nan | 8.69e+09 | 4.11e+09 | 4.58e+09 | 0.0006 | nan | nan | nan | 3.54e+08 | 1.11e+09 | nan | 8.1e+08 | -0.0647 | 8.1e+08 | nan | 1.613e+10 | 0.354 | nan | 2.44e+09 | nan | nan | nan | nan | nan | nan | nan | 1.369e+10 | nan | 1.369e+10 | 0.3626 | nan | nan | nan | nan | nan | 1.369e+10 | nan | 1.369e+10 | 0.76 | 0.3868 | 1.796e+10 | 0.76 | 0.387 | 1.808e+10 | 1.741e+10 | 0.2071 | nan |
2019-12-31 | 9.172e+10 | 0.4346 | 5.677e+10 | 5.396e+10 | 2.82e+09 | 2.82e+09 | nan | 0.4275 | 3.495e+10 | 0.4463 | nan | 9.65e+09 | 4.45e+09 | 5.2e+09 | 0.1105 | nan | -1.28e+08 | 1.28e+08 | 2.29e+08 | 1.05e+09 | nan | 7.85e+08 | -0.0309 | 7.85e+08 | nan | 2.592e+10 | 0.6071 | nan | 3.68e+09 | nan | nan | nan | nan | nan | nan | nan | 2.224e+10 | nan | 2.224e+10 | 0.6247 | nan | nan | nan | nan | nan | 2.224e+10 | nan | 2.224e+10 | 1.26 | 0.6526 | 1.766e+10 | 1.25 | 0.6487 | 1.782e+10 | 2.812e+10 | 0.6151 | nan |
2020-03-31 | 5.835e+10 | -0.3639 | 3.593e+10 | 3.315e+10 | 2.79e+09 | 2.79e+09 | nan | -0.3671 | 2.242e+10 | -0.3586 | nan | 9.52e+09 | 4.57e+09 | 4.95e+09 | -0.0136 | nan | -1.26e+08 | 1.26e+08 | -1.82e+08 | 1.05e+09 | nan | 7.57e+08 | -0.0357 | 7.57e+08 | nan | 1.314e+10 | -0.4932 | nan | 1.89e+09 | nan | nan | nan | nan | nan | nan | nan | 1.125e+10 | nan | 1.125e+10 | -0.4941 | nan | nan | nan | nan | nan | 1.125e+10 | nan | 1.125e+10 | 0.65 | -0.4877 | 1.744e+10 | 0.64 | -0.4883 | 1.762e+10 | 1.569e+10 | -0.4422 | nan |
2020-06-30 | 5.942e+10 | 0.0183 | 3.737e+10 | 3.462e+10 | 2.75e+09 | 2.75e+09 | nan | 0.04 | 2.205e+10 | -0.0164 | 0.3711 | 9.59e+09 | 4.76e+09 | 4.83e+09 | 0.0076 | nan | -1.19e+08 | 1.19e+08 | 3.55e+08 | 901M | nan | 6.97e+08 | -0.0793 | 6.97e+08 | nan | 1.314e+10 | 0.0002 | 0.2211 | 1.88e+09 | nan | nan | nan | nan | nan | nan | nan | 1.125e+10 | nan | 1.125e+10 | 0.0004 | 0.1894 | nan | nan | nan | nan | 1.125e+10 | nan | 1.125e+10 | 0.65 | 0.0113 | 1.725e+10 | 0.65 | 0.0117 | 1.742e+10 | 1.521e+10 | -0.0302 | 0.256 |
- Returns a dataframe with balance sheets from either Macrotrends.com, Yahoo Finance or Marketwatch. Default source is 'macrotrends'.
- Class Arguments:
-
ticker
: valid company ticker -
source
: 'yahoo', 'marketwatch', 'macrotrends', default: 'macrotrends' -
freq
: 'A' (annual data), 'Q' (quarterly data), default: 'A'
Default Example
fd = Fundamentals('AAPL', freq = 'A')
fd.balance_sheet()
cash_on_hand | receivables | inventory | prepaid_expenses | other_current_assets | total_current_assets | property,_plant,_and_equipment | longterm_investments | goodwill_and_intangible_assets | other_longterm_assets | total_longterm_assets | total_assets | total_current_liabilities | long_term_debt | other_noncurrent_liabilities | total_long_term_liabilities | total_liabilities | common_stock_net | retained_earnings_(accumulated_deficit) | comprehensive_income | other_share_holders_equity | share_holder_equity | total_liabilities_and_share_holders_equity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||
2005-09-30 | 8261.0 | 895.0 | 165.0 | NaN | 648.0 | 10300.0 | 817.0 | NaN | 96.0 | 303.0 | 1216.0 | 11516.0 | 3487.0 | NaN | 601.0 | 601.0 | 4088.0 | 3564.0 | 3925.0 | NaN | NaN | 7428.0 | 11516.0 |
2006-09-30 | 10110.0 | 1252.0 | 270.0 | NaN | 2270.0 | 14509.0 | 1281.0 | NaN | 177.0 | 1238.0 | 2696.0 | 17205.0 | 6443.0 | NaN | 778.0 | 778.0 | 7221.0 | 4355.0 | 5607.0 | 22.0 | NaN | 9984.0 | 17205.0 |
2007-09-30 | 15386.0 | 1637.0 | 346.0 | NaN | 3805.0 | 21956.0 | 1832.0 | NaN | 337.0 | 1222.0 | 3391.0 | 25347.0 | 9280.0 | NaN | 1535.0 | 1535.0 | 10815.0 | 5368.0 | 9101.0 | 63.0 | NaN | 14532.0 | 25347.0 |
2008-09-30 | 22111.0 | 2422.0 | 509.0 | NaN | 3920.0 | 30006.0 | 2455.0 | 2379.0 | 492.0 | 839.0 | 6165.0 | 36171.0 | 11361.0 | NaN | 1745.0 | 2513.0 | 13874.0 | 7177.0 | 15129.0 | 9.0 | NaN | 22297.0 | 36171.0 |
2009-09-30 | 23464.0 | 5057.0 | 455.0 | NaN | 1444.0 | 31555.0 | 2954.0 | 10528.0 | 453.0 | 2011.0 | 15946.0 | 47501.0 | 11506.0 | NaN | 3502.0 | 4355.0 | 15861.0 | 8210.0 | 23353.0 | 77.0 | NaN | 31640.0 | 47501.0 |
Yahoo Example
fd = Fundamentals('AAPL', source = 'yahoo') # no frequency choice for Yahoo...
fd.balance_sheet()
total_assets | total_liabilities_net_minority_interest | total_equity_gross_minority_interest | total_capitalization | common_stock_equity | net_tangible_assets | working_capital | invested_capital | tangible_book_value | total_debt | net_debt | share_issued | ordinary_shares_number | ticker | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||
2019-09-30 | 338516000 | 248028000 | 90488000 | 182295000 | 90488000 | 90488000 | 57101000 | 198535000 | 90488000 | 108047000 | 59203000 | 17772944 | 17772944 | AAPL |
2018-09-30 | 365725000 | 258578000 | 107147000 | 200882000 | 107147000 | 107147000 | 14473000 | 221630000 | 107147000 | 114483000 | 88570000 | 19019944 | 19019944 | AAPL |
2017-09-30 | 375319000 | 241272000 | 134047000 | 231254000 | 134047000 | 126032000 | 27831000 | 249727000 | 126032000 | 115680000 | 95391000 | 20504804 | 20504804 | AAPL |
Marketwatch Example
fd = Fundamentals('AAPL', source = 'marketwatch', freq = 'Q')
fd.balance_sheet()
cash_and_short_term_investments | cash_only | short-term_investments | cash_and_short_term_investments_growth | cash_and_st_investments___total_assets | total_accounts_receivable | accounts_receivables_net | accounts_receivables_gross | bad_debt_doubtful_accounts | other_receivables | accounts_receivable_growth | accounts_receivable_turnover | inventories | finished_goods | work_in_progress | raw_materials | progress_payments_and_other | other_current_assets | miscellaneous_current_assets | total_current_assets | net_property_plant_and_equipment | property_plant_and_equipment_-_gross | buildings | land_and_improvements | computer_software_and_equipment | other_property_plant_and_equipment | accumulated_depreciation | total_investments_and_advances | other_long-term_investments | long-term_note_receivable | intangible_assets | net_goodwill | net_other_intangibles | other_assets | tangible_other_assets | total_assets | assets_-_total_-_growth | st_debt_and_current_portion_lt_debt | short_term_debt | current_portion_of_long_term_debt | accounts_payable | accounts_payable_growth | income_tax_payable | other_current_liabilities | dividends_payable | accrued_payroll | miscellaneous_current_liabilities | total_current_liabilities | long-term_debt | long-term_debt_excl_capitalized_leases | non-convertible_debt | convertible_debt | capitalized_lease_obligations | provision_for_risks_and_charges | deferred_taxes | deferred_taxes_-_credit | deferred_taxes_-_debit | other_liabilities | other_liabilities_(excl_deferred_income) | deferred_income | total_liabilities | non-equity_reserves | total_liabilities___total_assets | preferred_stock_(carrying_value) | redeemable_preferred_stock | non-redeemable_preferred_stock | common_equity_(total) | common_stock_par_carry_value | retained_earnings | esop_debt_guarantee | cumulative_translation_adjustment_unrealized_for_exch_gain | unrealized_gain_loss_marketable_securities | revaluation_reserves | treasury_stock | common_equity___total_assets | total_shareholders\'_equity | total_shareholders\'_equity___total_assets | accumulated_minority_interest | total_equity | liabilities_and_shareholders\'_equity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2019-06-30 | 9.488e+10 | 2.29e+10 | nan | nan | 0.2944 | 2.647e+10 | 1.415e+10 | 1.415e+10 | nan | 1.233e+10 | nan | 2.03 | 3.36e+09 | 3.36e+09 | nan | nan | nan | 1.026e+10 | 1.026e+10 | 1.3497e+11 | 3.764e+10 | 9.398e+10 | nan | nan | nan | nan | 5.635e+10 | 1.1735e+11 | 1.1735e+11 | nan | nan | nan | nan | 3.228e+10 | 3.228e+10 | 3.2224e+11 | nan | 2.348e+10 | 9.95e+09 | 1.353e+10 | 2.912e+10 | nan | nan | 3.711e+10 | nan | nan | 3.711e+10 | 8.97e+10 | 8.494e+10 | 8.494e+10 | nan | nan | nan | 3.052e+10 | 1.61e+10 | 1.61e+10 | nan | 4.52e+09 | 4.52e+09 | nan | 2.2578e+11 | nan | 0.7007 | nan | nan | nan | 9.646e+10 | 4.337e+10 | 5.372e+10 | nan | -1.18e+09 | 328M | nan | nan | 0.2993 | 9.646e+10 | 0.2993 | nan | 9.646e+10 | 3.2224e+11 |
2019-09-30 | 1.0058e+11 | 2.812e+10 | nan | 0.0601 | 0.2971 | 4.58e+10 | 2.293e+10 | 2.293e+10 | nan | 2.288e+10 | 0.7302 | 1.40 | 4.11e+09 | 4.11e+09 | nan | nan | nan | 1.233e+10 | 1.233e+10 | 1.6282e+11 | 3.738e+10 | 9.596e+10 | nan | nan | nan | nan | 5.858e+10 | 1.067e+11 | 1.067e+11 | nan | nan | nan | nan | 3.162e+10 | 3.162e+10 | 3.3852e+11 | 0.0505 | 1.624e+10 | 5.98e+09 | 1.026e+10 | 4.624e+10 | 0.588 | nan | 4.324e+10 | nan | nan | 4.324e+10 | 1.0572e+11 | 9.181e+10 | 9.181e+10 | nan | nan | nan | 2.955e+10 | 1.692e+10 | 1.692e+10 | nan | 4.04e+09 | 4.04e+09 | nan | 2.4803e+11 | nan | 0.7327 | nan | nan | nan | 9.049e+10 | 4.517e+10 | 4.59e+10 | nan | -1.46e+09 | 707M | nan | nan | 0.2673 | 9.049e+10 | 0.2673 | nan | 9.049e+10 | 3.3852e+11 |
2019-12-31 | 1.0723e+11 | 2.299e+10 | nan | 0.0661 | 0.3148 | 3.995e+10 | 2.097e+10 | 2.097e+10 | nan | 1.898e+10 | -0.1279 | 2.30 | 4.1e+09 | 4.1e+09 | nan | nan | nan | 1.196e+10 | 1.196e+10 | 1.6323e+11 | 4.429e+10 | 1.0525e+11 | nan | nan | nan | nan | 6.096e+10 | 1.0173e+11 | 1.0173e+11 | nan | nan | nan | nan | 3.137e+10 | 3.137e+10 | 3.4062e+11 | 0.0062 | 1.647e+10 | 6.24e+09 | 1.024e+10 | 4.511e+10 | -0.0243 | nan | 4.058e+10 | nan | nan | 4.058e+10 | 1.0216e+11 | 1.0028e+11 | 9.308e+10 | nan | nan | 6.27e+08 | 2.82e+10 | nan | nan | nan | 2.045e+10 | 2.045e+10 | nan | 2.5109e+11 | nan | 0.7372 | nan | nan | nan | 8.953e+10 | 4.597e+10 | 4.398e+10 | nan | -1.26e+09 | 822M | nan | nan | 0.2628 | 8.953e+10 | 0.2628 | nan | 8.953e+10 | 3.4062e+11 |
2020-03-31 | 9.513e+10 | 2.996e+10 | nan | -0.1129 | 0.2969 | 3.068e+10 | 1.572e+10 | 1.572e+10 | nan | 1.496e+10 | -0.232 | 1.90 | 3.33e+09 | 3.33e+09 | nan | nan | nan | 1.461e+10 | 1.461e+10 | 1.4375e+11 | 4.399e+10 | 1.0684e+11 | nan | nan | nan | nan | 6.285e+10 | 1.0059e+11 | 1.0059e+11 | nan | nan | nan | nan | 3.207e+10 | 3.207e+10 | 3.204e+11 | -0.0594 | 2.163e+10 | 1.121e+10 | 1.041e+10 | 3.242e+10 | -0.2813 | nan | 4.205e+10 | nan | nan | 4.205e+10 | 9.609e+10 | 9.714e+10 | 8.909e+10 | nan | nan | 6.29e+08 | 2.819e+10 | nan | nan | nan | 2.056e+10 | 2.056e+10 | nan | 2.4198e+11 | nan | 0.7552 | nan | nan | nan | 7.843e+10 | 4.803e+10 | 3.318e+10 | nan | -1.83e+09 | -1.47e+09 | nan | nan | 0.2448 | 7.843e+10 | 0.2448 | nan | 7.843e+10 | 3.204e+11 |
2020-06-30 | 9.305e+10 | 2.73e+10 | nan | -0.0218 | 0.2932 | 3.208e+10 | 1.788e+10 | 1.788e+10 | nan | 1.419e+10 | 0.0456 | 1.85 | 3.98e+09 | 3.98e+09 | nan | nan | nan | 1.096e+10 | 1.096e+10 | 1.4007e+11 | 4.385e+10 | 1.0908e+11 | nan | nan | nan | nan | 6.523e+10 | 1.0222e+11 | 1.0222e+11 | nan | nan | nan | nan | 3.121e+10 | 3.121e+10 | 3.1734e+11 | -0.0095 | 2.005e+10 | 1.252e+10 | 7.53e+09 | 3.533e+10 | 0.0896 | nan | 3.995e+10 | nan | nan | 3.995e+10 | 9.532e+10 | 1.0214e+11 | 9.405e+10 | nan | nan | 6.3e+08 | 2.819e+10 | nan | nan | nan | 1.942e+10 | 1.942e+10 | nan | 2.4506e+11 | nan | 0.7722 | nan | nan | nan | 7.228e+10 | 4.87e+10 | 2.414e+10 | nan | -1.63e+09 | 1.61e+09 | nan | nan | 0.2278 | 7.228e+10 | 0.2278 | nan | 7.228e+10 | 3.1734e+11 |
- Returns a dataframe with cashflow statements from either Macrotrends.com, Yahoo Finance or Marketwatch. Default source is 'macrotrends'.
- Class Arguments:
-
ticker
: valid company ticker -
source
: 'yahoo', 'marketwatch', 'macrotrends', default: 'macrotrends' -
freq
: 'A' (annual data), 'Q' (quarterly data), default: 'A'
Default Example
fd = Fundamentals('AAPL', freq = 'A')
fd.cashflow_statement()
net_income_to_loss | total_depreciation_and_amortization__cash_flow | other_noncash_items | total_noncash_items | change_in_accounts_receivable | change_in_inventories | change_in_accounts_payable | change_in_assets_to_liabilities | total_change_in_assets_to_liabilities | cash_flow_from_operating_activities | net_change_in_property,_plant,_and_equipment | net_change_in_intangible_assets | net_acquisitions_to_divestitures | net_change_in_shortterm_investments | net_change_in_longterm_investments | net_change_in_investments__total | investing_activities__other | cash_flow_from_investing_activities | net_longterm_debt | net_current_debt | debt_issuance_to_retirement_net__total | net_common_equity_issued_to_repurchased | net_total_equity_issued_to_repurchased | total_common_and_preferred_stock_dividends_paid | financial_activities__other | cash_flow_from_financial_activities | net_cash_flow | stockbased_compensation | common_stock_dividends_paid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||
2005-09-30 | 1328.0 | 179.0 | 536.0 | 715.0 | 121.0 | 64.0 | 328.0 | 349.0 | 492.0 | 2535.0 | 260.0 | NaN | NaN | 2861.0 | 586.0 | 2275.0 | 21.0 | 2556.0 | NaN | NaN | NaN | 543.0 | 543.0 | NaN | NaN | 543.0 | 522.0 | 49.0 | NaN |
2006-09-30 | 1989.0 | 225.0 | 231.0 | 456.0 | 357.0 | 105.0 | 1611.0 | 1374.0 | 225.0 | 2220.0 | 657.0 | 28.0 | NaN | 1057.0 | 25.0 | 1032.0 | 10.0 | 357.0 | NaN | NaN | NaN | 318.0 | 318.0 | NaN | 6.0 | 324.0 | 2901.0 | 163.0 | NaN |
2007-09-30 | 3495.0 | 327.0 | 327.0 | 654.0 | 385.0 | 76.0 | 1494.0 | 288.0 | 1321.0 | 5470.0 | 735.0 | 251.0 | NaN | 2295.0 | 17.0 | 2312.0 | 49.0 | 3249.0 | NaN | NaN | NaN | 365.0 | 365.0 | NaN | 374.0 | 739.0 | 2960.0 | 242.0 | NaN |
2008-09-30 | 6119.0 | 496.0 | 936.0 | 1432.0 | 785.0 | 163.0 | 596.0 | 2397.0 | 2045.0 | 9596.0 | 1091.0 | 108.0 | 220.0 | 6722.0 | 38.0 | 6760.0 | 10.0 | 8189.0 | NaN | NaN | NaN | 483.0 | 483.0 | NaN | 633.0 | 1116.0 | 2523.0 | 516.0 | NaN |
2009-09-30 | 8235.0 | 734.0 | 1750.0 | 2484.0 | 939.0 | 54.0 | 92.0 | 233.0 | 560.0 | 10159.0 | 1144.0 | 69.0 | NaN | 16046.0 | NaN | 16046.0 | 175.0 | 17434.0 | NaN | NaN | NaN | 475.0 | 475.0 | NaN | 188.0 | 663.0 | 6612.0 | 710.0 | NaN |
2010-09-30 | 14013.0 | 1027.0 | 2319.0 | 3346.0 | 2142.0 | 596.0 | 6307.0 | 2333.0 | 1236.0 | 18595.0 | 2005.0 | 116.0 | 638.0 | 11075.0 | NaN | 11075.0 | 20.0 | 13854.0 | NaN | NaN | NaN | 912.0 | 912.0 | NaN | 345.0 | 1257.0 | 5998.0 | 879.0 | NaN |
2011-09-30 | 25922.0 | 1814.0 | 4036.0 | 5850.0 | 143.0 | 275.0 | 2515.0 | 2824.0 | 5757.0 | 37529.0 | 4260.0 | 3192.0 | 244.0 | 32464.0 | NaN | 32464.0 | 259.0 | 40419.0 | NaN | NaN | NaN | 831.0 | 831.0 | NaN | 613.0 | 1444.0 | 1446.0 | 1168.0 | NaN |
2012-09-30 | 41733.0 | 3277.0 | 6145.0 | 9422.0 | 5551.0 | 15.0 | 4467.0 | 800.0 | 299.0 | 50856.0 | 8295.0 | 1107.0 | 350.0 | 38427.0 | NaN | 38427.0 | 48.0 | 48227.0 | NaN | NaN | NaN | 665.0 | 665.0 | 2488.0 | 125.0 | 1698.0 | 931.0 | 1740.0 | 2488.0 |
2013-09-30 | 37037.0 | 6757.0 | 3394.0 | 10151.0 | 2172.0 | 973.0 | 2340.0 | 7283.0 | 6478.0 | 53666.0 | 8165.0 | 911.0 | 496.0 | 24042.0 | NaN | 24042.0 | 160.0 | 33774.0 | 16896.0 | NaN | 16896.0 | 22330.0 | 22330.0 | 10564.0 | 381.0 | 16379.0 | 3513.0 | 2253.0 | 10564.0 |
2014-09-30 | 39510.0 | 7946.0 | 5210.0 | 13156.0 | 4232.0 | 76.0 | 5938.0 | 5417.0 | 7047.0 | 59713.0 | 9571.0 | 242.0 | 3765.0 | 9017.0 | 10.0 | 9027.0 | 26.0 | 22579.0 | 11960.0 | 6306.0 | 18266.0 | 44270.0 | 44270.0 | 11126.0 | 419.0 | 37549.0 | 415.0 | 2863.0 | 11126.0 |
2015-09-30 | 53394.0 | 11257.0 | 5353.0 | 16610.0 | 417.0 | 238.0 | 5001.0 | 6082.0 | 11262.0 | 81266.0 | 11247.0 | 241.0 | 343.0 | 44417.0 | NaN | 44417.0 | 26.0 | 56274.0 | 27114.0 | 2191.0 | 29305.0 | 34710.0 | 34710.0 | 11561.0 | 750.0 | 17716.0 | 7276.0 | 3586.0 | 11561.0 |
2016-09-30 | 45687.0 | 10505.0 | 9634.0 | 20139.0 | 527.0 | 217.0 | 2117.0 | 2456.0 | 405.0 | 66231.0 | 12734.0 | 297.0 | NaN | 30634.0 | 1388.0 | 32022.0 | 924.0 | 45977.0 | 22454.0 | 397.0 | 22057.0 | 30797.0 | 30797.0 | 12150.0 | NaN | 20890.0 | 636.0 | 4210.0 | 12150.0 |
2017-09-30 | 48351.0 | 10157.0 | 10640.0 | 20797.0 | 2093.0 | 2723.0 | 8966.0 | 9073.0 | 4923.0 | 64225.0 | 12451.0 | NaN | 329.0 | 33147.0 | 395.0 | 33542.0 | 124.0 | 46446.0 | 25162.0 | 3852.0 | 29014.0 | 32345.0 | 32345.0 | 12769.0 | 1874.0 | 17974.0 | 195.0 | 4840.0 | 12769.0 |
2018-09-30 | 59531.0 | 10903.0 | 27694.0 | 16791.0 | 5322.0 | 828.0 | 9175.0 | 30013.0 | 34694.0 | 77434.0 | 13313.0 | NaN | 721.0 | 32363.0 | 1518.0 | 30845.0 | 745.0 | 16066.0 | 469.0 | 37.0 | 432.0 | 72069.0 | 72069.0 | 13712.0 | 2527.0 | 87876.0 | 5624.0 | 5340.0 | 13712.0 |
2019-09-30 | 55256.0 | 12547.0 | 5076.0 | 17623.0 | 245.0 | 289.0 | 1923.0 | 1521.0 | 3488.0 | 69391.0 | 10495.0 | NaN | 624.0 | 57460.0 | 633.0 | 58093.0 | 1078.0 | 45896.0 | 1842.0 | 5977.0 | 7819.0 | 66116.0 | 66116.0 | 14119.0 | 2922.0 | 90976.0 | 24311.0 | 6068.0 | 14119.0 |
Yahoo Example
fd = Fundamentals('AAPL', source = 'yahoo') # no frequency choice for Yahoo...
fd.cashflow_statement()
operating_cash_flow | investing_cash_flow | financing_cash_flow | end_cash_position | income_tax_paid_supplemental_data | interest_paid_supplemental_data | capital_expenditure | issuance_of_capital_stock | issuance_of_debt | repayment_of_debt | repurchase_of_capital_stock | free_cash_flow | ticker | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||
2019-09-30 | 69391000 | 45896000 | -90976000 | 50224000 | 15263000 | 3423000 | -10495000 | 781000 | 6963000 | -8805000 | -66897000 | 58896000 | AAPL |
2018-09-30 | 77434000 | 16066000 | -87876000 | 25913000 | 10417000 | 3022000 | -13313000 | 669000 | 6969000 | -6500000 | -72738000 | 64121000 | AAPL |
2017-09-30 | 63598000 | -46446000 | -17347000 | 20289000 | 11591000 | 2092000 | -12795000 | 555000 | 28662000 | -3500000 | -32900000 | 50803000 | AAPL |
Marketwatch Example
fd = Fundamentals('AAPL', source = 'marketwatch', freq = 'Q')
fd.cashflow_statement()
net_income_before_extraordinaries | net_income_growth | depreciation_depletion_and_amortization | depreciation_and_depletion | amortization_of_intangible_assets | deferred_taxes_and_investment_tax_credit | deferred_taxes | investment_tax_credit | other_funds | funds_from_operations | extraordinaries | changes_in_working_capital | receivables | accounts_payable | other_assets_liabilities | net_operating_cash_flow | net_operating_cash_flow_growth | net_operating_cash_flow___sales | capital_expenditures | capital_expenditures_(fixed_assets) | capital_expenditures_(other_assets) | capital_expenditures_growth | capital_expenditures___sales | net_assets_from_acquisitions | sale_of_fixed_assets_and_businesses | purchase_sale_of_investments | purchase_of_investments | sale_maturity_of_investments | other_uses | other_sources | net_investing_cash_flow | net_investing_cash_flow_growth | net_investing_cash_flow___sales | cash_dividends_paid_-_total | common_dividends | preferred_dividends | change_in_capital_stock | repurchase_of_common_and_preferred_stk | sale_of_common_and_preferred_stock | proceeds_from_stock_options | other_proceeds_from_sale_of_stock | issuance_reduction_of_debt_net | change_in_current_debt | change_in_long-term_debt | issuance_of_long-term_debt | reduction_in_long-term_debt | other_funds1 | other_uses1 | other_sources1 | net_financing_cash_flow | net_financing_cash_flow_growth | net_financing_cash_flow___sales | exchange_rate_effect | miscellaneous_funds | net_change_in_cash | free_cash_flow | free_cash_flow_growth | free_cash_flow_yield | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2019-06-30 | 1.004e+10 | nan | 2.93e+09 | 2.93e+09 | nan | nan | 8.6e+07 | nan | 1.37e+09 | 1.443e+10 | nan | -2.8e+09 | -214M | 220M | -4.31e+09 | 1.164e+10 | nan | 0.2165 | -2e+09 | -2e+09 | nan | nan | -0.0372 | -3.2e+08 | nan | 3.012e+10 | -8.19e+09 | 3.831e+10 | -2.68e+08 | -3e+07 | 2.75e+10 | nan | 0.5118 | -3.63e+09 | -3.63e+09 | nan | -1.695e+10 | -1.696e+10 | 1e+06 | 1e+06 | nan | -5.03e+09 | -2.03e+09 | -3e+09 | nan | -3e+09 | -1.2e+09 | -1.2e+09 | nan | -2.68e+10 | nan | -0.4988 | nan | nan | 1.233e+10 | 9.64e+09 | nan | nan |
2019-09-30 | 1.369e+10 | 0.3626 | 3.18e+09 | 3.18e+09 | nan | nan | -3.02e+08 | nan | 1.19e+09 | 1.775e+10 | nan | 2.16e+09 | -1.932e+10 | 1.788e+10 | 4.38e+09 | 1.991e+10 | 0.7111 | 0.3114 | -2.78e+09 | -2.78e+09 | nan | -0.3885 | -0.0434 | -1.3e+07 | nan | 2.8e+09 | -1.81e+10 | 2.09e+10 | -8.1e+08 | nan | -798M | -1.029 | -0.0125 | -3.48e+09 | -3.48e+09 | nan | -1.705e+10 | -1.744e+10 | 3.9e+08 | 3.9e+08 | nan | -293M | -3.95e+09 | 3.66e+09 | 6.96e+09 | -3.31e+09 | -213M | -213M | nan | -2.104e+10 | 0.2151 | -0.3291 | nan | nan | -1.93e+09 | 1.713e+10 | 0.778 | nan |
2019-12-31 | 2.224e+10 | 0.6247 | 2.82e+09 | 2.82e+09 | nan | nan | -3.49e+08 | nan | 1.57e+09 | 2.627e+10 | nan | 4.25e+09 | 5.92e+09 | -1.09e+09 | -555M | 3.052e+10 | 0.5327 | 0.3327 | -2.11e+09 | -2.11e+09 | nan | 0.2413 | -0.023 | -9.58e+08 | nan | -1.047e+10 | -3.749e+10 | 2.702e+10 | -1.3e+08 | nan | -1.367e+10 | -16.1278 | -0.149 | -3.54e+09 | -3.54e+09 | nan | -2.07e+10 | -2.071e+10 | 2e+06 | 2e+06 | nan | 231M | -979M | 1.21e+09 | 2.21e+09 | -1e+09 | -1.4e+09 | -1.4e+09 | nan | -2.541e+10 | -0.2076 | -0.277 | nan | nan | -8.56e+09 | 2.841e+10 | 0.6581 | nan |
2020-03-31 | 1.125e+10 | -0.4941 | 2.79e+09 | 2.79e+09 | nan | nan | -3.02e+08 | nan | 1.58e+09 | 1.531e+10 | nan | -2e+09 | 9.29e+09 | -1.243e+10 | 412M | 1.331e+10 | -0.5638 | 0.2281 | -1.85e+09 | -1.85e+09 | nan | 0.1206 | -0.0318 | -1.76e+08 | nan | 1.134e+10 | -2.914e+10 | 4.048e+10 | -2.96e+08 | nan | 9.01e+09 | 1.6594 | 0.1545 | -3.38e+09 | -3.38e+09 | nan | -1.815e+10 | -1.857e+10 | 4.28e+08 | 4.28e+08 | nan | 803M | 5.05e+09 | -4.25e+09 | nan | -4.25e+09 | -222M | -222M | nan | -2.094e+10 | 0.1758 | -0.3589 | nan | nan | 1.38e+09 | 1.146e+10 | -0.5967 | nan |
2020-06-30 | 1.125e+10 | 0.0004 | 2.75e+09 | 2.75e+09 | nan | nan | 8.33e+08 | nan | 1.86e+09 | 1.67e+10 | nan | -430M | -1.37e+09 | 2.73e+09 | -1.1e+09 | 1.627e+10 | 0.2224 | 0.2739 | -1.57e+09 | -1.57e+09 | nan | 0.1554 | -0.0263 | -3.39e+08 | nan | -3e+09 | -3.018e+10 | 2.718e+10 | -2.63e+08 | nan | -5.17e+09 | -1.5731 | -0.0869 | -3.66e+09 | -3.66e+09 | nan | -1.589e+10 | -1.589e+10 | nan | nan | nan | 2.17e+09 | 1.12e+09 | 1.05e+09 | 8.43e+09 | -7.38e+09 | -1.74e+09 | -1.74e+09 | nan | -1.912e+10 | 0.0871 | -0.3217 | nan | nan | -8.01e+09 | 1.471e+10 | 0.2835 | 0.044 |
- Returns a dataframe with annual or quarterly financial ratios up to 2005 from Macrotrends.com.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Macrotrends.com -
freq
: 'A' (annual data), 'Q' (quarterly data), default: 'A'
Example
fd = Fundamentals('AAPL', freq = 'A')
fd.ratios()
current_ratio | longterm_debt_to_capital | debt_to_equity_ratio | gross_margin | operating_margin | ebit_margin | ebitda_margin | pretax_profit_margin | net_profit_margin | asset_turnover | inventory_turnover_ratio | receiveable_turnover | days_sales_in_receivables | roe__return_on_equity | return_on_tangible_equity | roa__return_on_assets | roi__return_on_investment | book_value_per_share | operating_cash_flow_per_share | free_cash_flow_per_share | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||
2005-09-30 | 2.9538 | NaN | NaN | 29.0144 | 11.7938 | 11.7938 | 13.0787 | 12.9783 | 9.5327 | 1.2097 | 59.9333 | 15.5654 | 23.4495 | 17.8783 | 18.1124 | 11.5318 | 17.8783 | 0.3177 | 0.1057 | 0.0948 |
2006-09-30 | 2.2519 | NaN | NaN | 28.9827 | 12.7000 | 12.7000 | 13.8649 | 14.5897 | 10.2977 | 1.1226 | 50.8037 | 15.4273 | 23.6593 | 19.9219 | 20.2814 | 11.5606 | 19.9219 | 0.4169 | 0.0153 | 0.0312 |
2007-09-30 | 2.3659 | NaN | NaN | 33.1679 | 17.9307 | 17.9307 | 19.2611 | 20.3678 | 14.2200 | 0.9697 | 47.4740 | 15.0141 | 24.3106 | 24.0504 | 24.6214 | 13.7886 | 24.0504 | 0.5950 | 0.1293 | 0.1266 |
2008-09-30 | 2.6411 | NaN | NaN | 35.2005 | 22.2107 | 22.2107 | 23.5337 | 23.8644 | 16.3213 | 1.0365 | 47.7289 | 15.4794 | 23.5798 | 27.4432 | 28.0624 | 16.9169 | 27.4432 | 0.8964 | 0.1602 | 0.1465 |
2009-09-30 | 2.7425 | NaN | NaN | 40.1399 | 27.3628 | 27.3628 | 29.0735 | 28.1226 | 19.1936 | 0.9032 | 56.4462 | 8.4843 | 43.0207 | 26.0272 | 26.4052 | 17.3365 | 26.0272 | 1.2558 | 0.0201 | 0.0183 |
- Returns a dataframe with current key statistics and financial ratios from either Yahoo Finance or Finviz. Default key metrics for the 'macrotrends' and 'marketwatch' source is from Finviz.
- Class Arguments:
-
ticker
: valid company ticker -
source
: 'yahoo', 'marketwatch', 'macrotrends', default: 'macrotrends' -
freq
: choice has no effect, most recent data is returned
Default Example
fd = Fundamentals('AAPL')
fd.key_metrics()
index | market_cap | income | sales | book_to_sh | .. | |
---|---|---|---|---|---|---|
0 | DJIA S&P500 | 1.94097e+12 | 5.842e+10 | 2.7386e+11 | 4.19 | ... |
Yahoo Example
fd = Fundamentals('AAPL', source = 'yahoo')
fd.key_metrics()
payout_ratio | profit_margin | operating_margin_(ttm) | return_on_assets_(ttm) | return_on_equity_(ttm) | ... | |
---|---|---|---|---|---|---|
0 | 0.2373 | 0.2133 | 0.2452 | 0.1312 | 0.6925 | ... |
- Returns current earnings estimates for the current quarter, next quarter, current year and the next year from Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.earnings_estimates('AAPL')
date | no_of_analysts | avg_estimate | low_estimate | high_estimate | year_ago_eps | |
---|---|---|---|---|---|---|
1 | Current Qtr. (Sep 2020) | 28 | 2.8 | 2.18 | 3.19 | 3.03 |
2 | Next Qtr. (Dec 2020) | 24 | 5.45 | 4.76 | 6.82 | 4.99 |
3 | Current Year (2020) | 35 | 12.97 | 12.36 | 13.52 | 11.89 |
4 | Next Year (2021) | 35 | 15.52 | 12.67 | 18 | 12.97 |
- Returns earnings estimates for the current quarter, next quarter, current year and the next year for the current date, 7 days ago, 30 days ago, 60 days ago and 90 days ago from Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.earnings_estimate_trends()
date | current_estimate | 7_days_ago | 30_days_ago | 60_days_ago | 90_days_ago | |
---|---|---|---|---|---|---|
1 | Current Qtr. (Sep 2020) | 2.8 | 2.84 | 2.79 | 2.82 | 2.8 |
2 | Next Qtr. (Dec 2020) | 5.45 | 5.44 | 5.22 | 5.21 | 5.22 |
3 | Current Year (2020) | 12.97 | 13 | 12.41 | 12.39 | 12.32 |
4 | Next Year (2021) | 15.52 | 15.54 | 14.94 | 14.86 | 14.73 |
- Returns earnings estimates and actual earnings for the past 4 quarters from Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.earnings_history()
date | eps_est | eps_actual | difference | surprise_% | |
---|---|---|---|---|---|
1 | 9/29/2019 | 2.84 | 3.03 | 0.19 | 0.067 |
2 | 12/30/2019 | 4.55 | 4.99 | 0.44 | 0.097 |
3 | 3/30/2020 | 2.26 | 2.55 | 0.29 | 0.128 |
4 | 6/29/2020 | 2.04 | 2.58 | 0.54 | 0.265 |
- Returns revenue estimates for the current quarter, next quarter, current year and the next year from Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.revenue_estimates()
date | no_of_analysts | avg_estimate | low_estimate | high_estimate | year_ago_sales | sales_growth_(yearest) | |
---|---|---|---|---|---|---|---|
1 | Current Qtr. (Sep 2020) | 26 | 6.351e+10 | 5.255e+10 | 6.85e+10 | 6.404e+10 | -0.008 |
2 | Next Qtr. (Dec 2020) | 24 | 1.0036e+11 | 8.992e+10 | 1.157e+11 | 8.85e+10 | 0.134 |
3 | Current Year (2020) | 33 | 2.7338e+11 | 2.6236e+11 | 2.8089e+11 | 2.6017e+11 | 0.051 |
4 | Next Year (2021) | 33 | 3.0734e+11 | 2.7268e+11 | 3.3153e+11 | 2.7338e+11 | 0.124 |
- Returns earnings estimates and actual earnings for the past 4 quarters from Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.growth_estimates()
Output
aapl | industry | sector(s) | sandp_500 | |
---|---|---|---|---|
Current_Qtr. | -0.079 | nan | nan | nan |
Next_Qtr. | 0.088 | nan | nan | nan |
Current_Year | 0.088 | nan | nan | nan |
Next_Year | 0.195 | nan | nan | nan |
Next_5_Years_(per_annum) | 0.1246 | nan | nan | nan |
Past_5_Years_(per_annum) | 0.0842 | nan | nan | nan |
The earnings call transcripts are collected from The Motley Fool and are available until Q1 2018. The data returns a simple breakdown of the sections of the earnings call which will still need to be processed further. The full html of the call is also available.
- Returns recent history (up to Q1 2018) of earnings call transcripts.
- Function Arguments:
-
html = True
returns additional columns with html of transcript from Motley Fool. - Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is the Motley Fool -
freq
: choice has no effect
Example
fd = Fundamentals('AAPL')
fd.transcripts(html = True)
prepared_remarks | questions_and_answers | call_participants | ticker | html | date | time | quarter | link | |
---|---|---|---|---|---|---|---|---|---|
2020-07-31 | Operator Good day, everyone. Welcome to the Apple Inc. third-quarter fiscal year 2020 earnings con ... | Operator [Operator instructions] Luca Maestri -- Chief Financial Officer Operator, may we plea ... | Tejas Gala -- Senior Manager, Corporate Finance, and Investor Relations Tim Cook -- Chief Executiv ... | AAPL | <h2>Prepared Remarks:</h2> <p><strong>Operator</strong></p> <p>Good day, everyone. Welcome to the Ap ... | 2020/07/31 | 5:00 p.m. ET | Q3 2020 | https://www.fool.com/earnings/call-transcripts/2020/07/31/apple-aapl-q3-2020-earnings-call-transcrip ... |
2020-04-30 | Operator Good day, everyone. Welcome to the Apple Inc. Second Quarter Fiscal Year 2020 Earnings Co ... | Operator Yes. That will come from Shannon Cross, Cross Research. Shannon Cross -- Cross Research ... | Tejas Gala -- Senior Manager, Corporate Finance and Investor Relations Tim Cook -- Chief Executive ... | AAPL | <h2>Prepared Remarks:</h2> <p><strong>Operator</strong></p> <p>Good day, everyone. Welcome to the Ap ... | 2020/04/30 | 5:00 p.m. ET | Q2 2020 | https://www.fool.com/earnings/call-transcripts/2020/04/30/apple-inc-aapl-q2-2020-earnings-call-trans ... |
2020-01-28 | Operator Good day everyone. Welcome to the Apple Incorporated First Quarter Fiscal Year 2020 Earni ... | Operator Yes. That will be from Amit Daryanani with Evercore. Amit Daryanani -- Evercore ISI -- ... | Tejas Gala -- Senior Analyst, Corporate Finance and Investor Relations Tim Cook -- Chief Executive ... | AAPL | <h2>Prepared Remarks:</h2> <p><strong>Operator</strong></p> <p>Good day everyone. Welcome to the App ... | 2020/01/28 | 5:00 p.m. ET | Q1 2020 | https://www.fool.com/earnings/call-transcripts/2020/01/28/apple-inc-aapl-q1-2020-earnings-call-trans ... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns company insider transactions for the past year from Finviz.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Finviz -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.insider_transactions()
insider_trading | relationship | date | transaction | cost | #shares | value_($) | #shares_total | sec_form_4 | |
---|---|---|---|---|---|---|---|---|---|
0 | COOK TIMOTHY D | Chief Executive Officer | Aug 25 | Sale | 496.91 | 265160 | 131761779 | 837374 | Aug 25 06:45 PM |
1 | KONDO CHRIS | Principal Accounting Officer | May 08 | Sale | 305.62 | 4491 | 1372539 | 7370 | May 12 06:30 PM |
2 | JUNG ANDREA | Director | Apr 28 | Option Exercise | 48.95 | 9590 | 469389 | 33548 | Apr 30 09:30 PM |
3 | O'BRIEN DEIRDRE | Senior Vice President | Apr 16 | Sale | 285.12 | 9137 | 2605141 | 33972 | Apr 17 06:31 PM |
4 | Maestri Luca | Senior Vice President, CFO | Apr 07 | Sale | 264.44 | 41062 | 10858445 | 27568 | Apr 09 06:30 PM |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns recent history of analyst ratings from Finviz.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Finviz -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.analyst_ratings()
Output
date | action | rating_institution | rating | price_target |
---|---|---|---|---|
2020-09-01 00:00:00 | Reiterated | JP Morgan | Overweight | $115 → $150 |
2020-09-01 00:00:00 | Reiterated | Cowen | Outperform | $530 → $133 |
2020-08-31 00:00:00 | Reiterated | Monness Crespi & Hardt | Buy | $117.50 → $144 |
2020-08-26 00:00:00 | Reiterated | Wedbush | Outperform | $515 → $600 |
2020-08-25 00:00:00 | Reiterated | Cowen | Outperform | $470 → $530 |
... | ... | ... | ... | ... |
- Returns current ESG scores from Sustainalytics published on Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.esg_score()
date | total_esg_risk_score | risk_category | risk_percentile | environment_risk_score | social_risk_score | ... | |
---|---|---|---|---|---|---|---|
0 | 2020-08-25 | 24 | Medium | 33rd | 0.5 | 13 | ... |
- Returns current corporate governance scores from Institutional Shareholder Services (ISS) published on Yahoo Finance.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect, most recent data is returned
Example
fd = Fundamentals('AAPL')
fd.corporate_governance_score()
Output
audit | board | shareholder_rights | compensation | quality_score | ticker | date | |
---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 3 | 1 | AAPL | 2020-08-25 |
- Returns company sector, industry, current number of employees and a company description.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect
Example
fd = Fundamentals('AAPL')
fd.profile()
company_name | sector | industry | number_of_employees | description | ticker | |
---|---|---|---|---|---|---|
0 | Apple Inc. | Technology | Consumer Electronics | 137000 | Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide... | AAPL |
- Returns current company executives with name, title, salary, age and their gender.
- Class Arguments:
-
ticker
: valid company ticker -
source
: choice has no effect, data is from Yahoo Finance -
freq
: choice has no effect
Example
fd = Fundamentals('AAPL')
fd.executives_info()
name | title | pay | exercised | year_born | gender | age_at_end_of_year | |
---|---|---|---|---|---|---|---|
0 | Mr. Timothy D. Cook | CEO & Director | 1.156e+07 | nan | 1961 | male | 59 |
1 | Mr. Luca Maestri | CFO & Sr. VP | 3.58e+06 | nan | 1964 | male | 56 |
2 | Mr. Jeffrey E. Williams | Chief Operating Officer | 3.57e+06 | nan | 1964 | male | 56 |
3 | Ms. Katherine L. Adams | Sr. VP, Gen. Counsel & Sec. | 3.6e+06 | nan | 1964 | female | 56 |
4 | Ms. Deirdre O'Brien | Sr. VP of People & Retail | 2.69e+06 | nan | 1967 | female | 53 |
The functions below help to retrieve daily historical price data from Yahoo Finance
as well as most recent option prices from Yahoo Finance or CBOE.
Furthermore, the historical_futures_contracts
function enables a bulk download of historical monthly futures contracts up to the year 2000 for currencies, indices, interest rates and commodities including energy, metals and agricultural contracts. The data is downloaded from www.mrci.com but the data is not completely cleaned (yet).
import finpie.price_data
# Historical price data from Yahoo Finance, most recent option prices from Yahoo Finance and CBOE, and futures prices bulk-download...
# from finpie.price_data import price_data
import finpie
- Returns dataframe with daily historical prices from Yahoo Finance.
Example
historical_prices('AAPL')
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 1993-01-29 | 43.9688 | 43.9688 | 43.75 | 43.9375 | 26.1841 | 1003200 |
1 | 1993-02-01 | 43.9688 | 44.25 | 43.9688 | 44.25 | 26.3703 | 480500 |
2 | 1993-02-02 | 44.2188 | 44.375 | 44.125 | 44.3438 | 26.4262 | 201300 |
3 | 1993-02-03 | 44.4062 | 44.8438 | 44.375 | 44.8125 | 26.7055 | 529400 |
4 | 1993-02-04 | 44.9688 | 45.0938 | 44.4688 | 45 | 26.8172 | 531500 |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns two dataframes for current put and call options from Yahoo Finance.
Example
calls, puts = yahoo_option_chain('AAPL')
Call options chain
contract_name | last_trade_date | strike | last_price | ... | |
---|---|---|---|---|---|
0 | AAPL200828C00190000 | 2020-08-25 3:40PM EDT | 190 | 310.29 | ... |
1 | AAPL200828C00195000 | 2020-08-25 12:36PM EDT | 195 | 300.7 | ... |
2 | AAPL200828C00200000 | 2020-08-25 12:13PM EDT | 200 | 294.8 | ... |
3 | AAPL200828C00205000 | 2020-08-06 3:07PM EDT | 205 | 249.54 | ... |
... | ... | ... | ... | ... | ... |
Put options chain
contract_name | last_trade_date | strike | last_price | bid | |
---|---|---|---|---|---|
0 | AAPL200828P00190000 | 2020-08-24 2:05PM EDT | 190 | 0.01 | ... |
1 | AAPL200828P00195000 | 2020-08-10 10:38AM EDT | 195 | 0.02 | ... |
2 | AAPL200828P00200000 | 2020-08-24 1:36PM EDT | 200 | 0.01 | ... |
3 | AAPL200828P00205000 | 2020-08-24 10:08AM EDT | 205 | 0.02 | ... |
... | ... | ... | ... | ... | ... |
- Returns two dataframes for current put and call options from CBOE.
Example
calls, puts = cboe_option_chain('AAPL')
Call options chain
expiration | calls | last_sale | net | bid | ask | vol | iv | delta | gamma | open_int | strike | underlying | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 09/25/2020 | AAPL200925C00058750 | 46.75 | -2.375 | 50.1 | 52.65 | 15 | 0.02 | 1 | 0.0002 | 0 | 58.75 | 110.13 |
1 | 09/25/2020 | AAPL200925C00060000 | 49.2 | 1.325 | 48.85 | 51.4 | 33 | 0.02 | 1 | 0.0001 | 38 | 60 | 110.13 |
2 | 09/25/2020 | AAPL200925C00061250 | 49.3 | 0 | 47.6 | 50.2 | 0 | 0.02 | 1 | 0.0002 | 0 | 61.25 | 110.13 |
3 | 09/25/2020 | AAPL200925C00062500 | 43.1 | -2.3 | 47.2 | 48.05 | 2 | 0.02 | 0.9989 | 0.0002 | 6 | 62.5 | 110.13 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
Put options chain
expiration | puts | last_sale | net | bid | ask | vol | iv | delta | gamma | open_int | strike | underlying | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 09/25/2020 | AAPL200925P00058750 | 0.06 | 0 | 0 | 0.01 | 0 | 2.001 | -0.001 | 0.0001 | 76 | 58.75 | 110.13 |
1 | 09/25/2020 | AAPL200925P00060000 | 0.01 | 0 | 0 | 0.01 | 0 | 1.876 | -0.0008 | 0.0001 | 505 | 60 | 110.13 |
2 | 09/25/2020 | AAPL200925P00061250 | 0.03 | 0 | 0 | 0.01 | 0 | 1.8406 | -0.0009 | 0.0001 | 17 | 61.25 | 110.13 |
3 | 09/25/2020 | AAPL200925P00062500 | 0.01 | -0.005 | 0 | 0.03 | 10 | 1.8178 | -0.0011 | 0.0002 | 123 | 62.5 | 110.13 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns daily price data for a number of monthly future contracts including open interest of each contract for the given date range.
Example
historical_futures_contracts( pd.date_range('2020-01-01', '2020-09-01') )
month | date | open | high | low | close | change | volume | open_interest | change_in_oi | future | |
---|---|---|---|---|---|---|---|---|---|---|---|
2020-01-06 | Jan20 | 200106 | 296.2 | 299.4 | 296.2 | 297.7 | 1.6 | 4103 | 2459 | -811 | Soybean Meal(CBOT) |
2020-01-06 | Mar20 | 200106 | 301.5 | 304.5 | 300.6 | 302.9 | 1.7 | 58930 | 222007 | 3,678 | Soybean Meal(CBOT) |
2020-01-06 | May20 | 200106 | 305.3 | 308.3 | 304.6 | 306.9 | 1.7 | 23500 | 92983 | 2,616 | Soybean Meal(CBOT) |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns daily price data for a number of monthly future contracts including open interest of each contract for the given date.
Example
futures_prices('2020-01-06')
month | date | open | high | low | close | change | volume | open_interest | change_in_oi | future | |
---|---|---|---|---|---|---|---|---|---|---|---|
2020-01-06 | Jan20 | 200106 | 296.2 | 299.4 | 296.2 | 297.7 | 1.6 | 4103 | 2459 | -811 | Soybean Meal(CBOT) |
2020-01-06 | Mar20 | 200106 | 301.5 | 304.5 | 300.6 | 302.9 | 1.7 | 58930 | 222007 | 3,678 | Soybean Meal(CBOT) |
2020-01-06 | May20 | 200106 | 305.3 | 308.3 | 304.6 | 306.9 | 1.7 | 23500 | 92983 | 2,616 | Soybean Meal(CBOT) |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The functions below retrieve economic data from the OECD nad EIA database.
The available OECD timeseries so far include the OECD composite leading indicators, OECD business surveys, OECD main economic indicators and OECD balance of payments.
The data can be accessed by country or for list of countries and for timeseries specific keyword arguments. Not all timeseries are available for all countries at all frequencies.
For available country codes see here.
from finpie.economic_data import oecd_data # or import finpie
# Example for instantiating class for Australia and the USA at monthly frequency with national currencies
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M', currency_code = 'NXCU')
# or oecd = finpie.OecdData(...)
# Example for instantiating class for all available countries at quarterly frequency with dollar converted currencies
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q', currency_code = 'CXCU')
# or oecd = finpie.OecdData(...)
- Returns the OECD composite leading indicator with a given measure. Only monthly data available.
- Subject options:
- (default) amplitude adjusted
- LOLITONO - normalised
- LOLITOTR_STSA - trend restored
- LOLITOTR_GYSA - 12-month rate of change of the trend restored
- BSCICP03 - OECD standardised BCI, amplitude adjusted
- CSCICP03 - OECD standardised CCI, amplitude adjusted
- LORSGPRT - ratio to trend (gdp)
- LORSGPNO - normalised ( gdp )
- LORSGPTD - trend ( gdp )
- LORSGPOR_IXOBSA - original seasonally adjusted (gdp)
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.cli(subject = 'amplitude')
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1955-01-01 00:00:00 | LOLITOAA | Amplitude adjusted (CLI) | United States | M | 1955-01 | IDX | 0 | 101.484 |
1955-02-01 00:00:00 | LOLITOAA | Amplitude adjusted (CLI) | United States | M | 1955-02 | IDX | 0 | 101.838 |
1955-03-01 00:00:00 | LOLITOAA | Amplitude adjusted (CLI) | United States | M | 1955-03 | IDX | 0 | 102.131 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the OECD consumer confidence indicator. Only monthly data available.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.cci()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | CSCICP03 | OECD Standardised CCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1960-01 | IDX | 0 | 101.498 |
1960-02-01 00:00:00 | CSCICP03 | OECD Standardised CCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1960-02 | IDX | 0 | 101.243 |
1960-03-01 00:00:00 | CSCICP03 | OECD Standardised CCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1960-03 | IDX | 0 | 101.023 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the OECD business confidence indicator. Only monthly data available.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.bci()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1950-01-01 00:00:00 | BSCICP03 | OECD Standardised BCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1950-01 | IDX | 0 | 101.071 |
1950-02-01 00:00:00 | BSCICP03 | OECD Standardised BCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1950-02 | IDX | 0 | 101.59 |
1950-03-01 00:00:00 | BSCICP03 | OECD Standardised BCI, Amplitude adjusted (Long term average=100), sa | United States | M | 1950-03 | IDX | 0 | 102.282 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the M1 monetary aggregate. Not available for all countries.
- Arguments:
index = True
returns an index,index = False
returns level valuesseasonally_adjusted = True
returns seasonally adjusted index
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.monetary_aggregates_m1(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1992-01-01 00:00:00 | MANMM101 | Monetary aggregates and their components > Narrow money and components > M1 and components > M1 | Czech Republic | M | 1992-01 | IDX | 0 | 10.4902 |
1992-02-01 00:00:00 | MANMM101 | Monetary aggregates and their components > Narrow money and components > M1 and components > M1 | Czech Republic | M | 1992-02 | IDX | 0 | 10.4718 |
1992-03-01 00:00:00 | MANMM101 | Monetary aggregates and their components > Narrow money and components > M1 and components > M1 | Czech Republic | M | 1992-03 | IDX | 0 | 10.7145 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the M3 monetary aggregate. Not available for all countries.
- Arguments:
index = True
returns an index,index = False
returns level valuesseasonally_adjusted = True
returns seasonally adjusted index
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.monetary_aggregates_m3( index = True, seasonally_adjuted = True )
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1980-02-01 00:00:00 | MABMM301 | Monetary aggregates and their components > Broad money and components > M3 > M3 | Korea | M | 1980-02 | IDX | 0 | 0.461489 |
1980-03-01 00:00:00 | MABMM301 | Monetary aggregates and their components > Broad money and components > M3 > M3 | Korea | M | 1980-03 | IDX | 0 | 0.47687 |
1980-04-01 00:00:00 | MABMM301 | Monetary aggregates and their components > Broad money and components > M3 > M3 | Korea | M | 1980-04 | IDX | 0 | 0.488449 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns interbank interest rates. Not available for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.interbank_rates()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1990-08-01 00:00:00 | IRSTCI01 | Interest Rates > Immediate rates (< 24 hrs) > Call money/interbank rate > Total | Australia | M | 1990-08 | PC | 0 | 14 |
1990-09-01 00:00:00 | IRSTCI01 | Interest Rates > Immediate rates (< 24 hrs) > Call money/interbank rate > Total | Australia | M | 1990-09 | PC | 0 | 14 |
1990-10-01 00:00:00 | IRSTCI01 | Interest Rates > Immediate rates (< 24 hrs) > Call money/interbank rate > Total | Australia | M | 1990-10 | PC | 0 | 13.43 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns short-term interest rates. Not avaialable for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.short_term_rates()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1968-01-01 00:00:00 | IR3TBB01 | Interest Rates > 3-month or 90-day rates and yields > Bank bills > Total | Australia | M | 1968-01 | PC | 0 | 5.1 |
1968-02-01 00:00:00 | IR3TBB01 | Interest Rates > 3-month or 90-day rates and yields > Bank bills > Total | Australia | M | 1968-02 | PC | 0 | 5.15 |
1968-03-01 00:00:00 | IR3TBB01 | Interest Rates > 3-month or 90-day rates and yields > Bank bills > Total | Australia | M | 1968-03 | PC | 0 | 5.15 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns long-term interest rates. Not available for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.long_term_rates()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1969-07-01 00:00:00 | IRLTLT01 | Interest Rates > Long-term government bond yields > 10-year > Main (including benchmark) | Australia | M | 1969-07 | PC | 0 | 5.8 |
1969-08-01 00:00:00 | IRLTLT01 | Interest Rates > Long-term government bond yields > 10-year > Main (including benchmark) | Australia | M | 1969-08 | PC | 0 | 5.79 |
1969-09-01 00:00:00 | IRLTLT01 | Interest Rates > Long-term government bond yields > 10-year > Main | ||||||
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns aggregate share prices of a given country. Not available for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.all_share_prices()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1958-01-01 00:00:00 | SPASTT01 | Share Prices > All shares/broad > Total > Total | Australia | M | 1958-01 | IDX | 0 | 2.46886 |
1958-02-01 00:00:00 | SPASTT01 | Share Prices > All shares/broad > Total > Total | Australia | M | 1958-02 | IDX | 0 | 2.55808 |
1958-03-01 00:00:00 | SPASTT01 | Share Prices > All shares/broad > Total > Total | Australia | M | ||||
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns aggregate share prices of industrial companies from a given country. Not available for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.share_prices_industrials()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1955-01-01 00:00:00 | SPINTT01 | Share Prices > Industrials > Total > Total | Norway | M | 1955-01 | IDX | 0 | 2.38957 |
1955-02-01 00:00:00 | SPINTT01 | Share Prices > Industrials > Total > Total | Norway | M | 1955-02 | IDX | 0 | 2.29226 |
1955-03-01 00:00:00 | SPINTT01 | Share Prices > Industrials > Total > Total | Norway | M | 1955-03 | IDX | 0 | 2.34632 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns USD spot exchange rates at end of month/quarter.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
usd_exchange_rates_spot()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1983-10-01 00:00:00 | LCEATT02 | Labour Compensation > Earnings > All activities > Weekly | Australia | Q | 1983-Q4 | AUD | 0 | 311.822 |
1984-01-01 00:00:00 | LCEATT02 | Labour Compensation > Earnings > All activities > Weekly | Australia | Q | 1984-Q1 | AUD | 0 | 321.838 |
1984-04-01 00:00:00 | LCEATT02 | Labour Compensation > Earnings > All activities > Weekly | Australia | Q | 1984-Q2 | AUD | 0 | 333.959 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly/quarterly average USD exchange rates.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.usd_exchange_rates_average()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1957-01-01 00:00:00 | CCUSMA02 | Currency Conversions > US$ exchange rate > Average of daily rates > National currency:USD | Australia | M | 1957-01 | AUD | 0 | 0.598516 |
1957-02-01 00:00:00 | CCUSMA02 | Currency Conversions > US$ exchange rate > Average of daily rates > National currency:USD | Australia | M | 1957-02 | AUD | 0 | 0.598015 |
1957-03-01 00:00:00 | CCUSMA02 | Currency Conversions > US$ exchange rate > Average of daily rates > National currency:USD | Australia | M | 1957-03 | AUD | 0 | 0.599125 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns overall real exchange rates.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.rer_overall()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1972-01-01 00:00:00 | CCRETT01 | Currency Conversions > Real effective exchange rates > Overall Economy > CPI | Australia | M | 1972-01 | IDX | 0 | 110.762 |
1972-02-01 00:00:00 | CCRETT01 | Currency Conversions > Real effective exchange rates > Overall Economy > CPI | Australia | M | 1972-02 | IDX | 0 | 109.613 |
1972-03-01 00:00:00 | CCRETT01 | Currency Conversions > Real effective exchange rates > Overall Economy > CPI | Australia | M | 1972-03 | IDX | 0 | 108.894 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns value of exports in national currency or dollar converted, etc..
- Arguments:
growth = True
returns seasonally adjusted growthgrowth = False
returns monthly level values in specified currency conversion (national or dollar converted)seasonally_adjusted = True
returns seasonally adjusted monthly level values in specified currency conversion (national or dollar converted)
Example
oecd = oecd_data.OecdData( country_code = 'all', currency_code = 'CXCU', freq = 'M' )
oecd.exports_value(growth = False, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1958-01-01 00:00:00 | XTEXVA01 | International Trade > Exports > Value (goods) > Total | Australia | M | 1958-01 | USD | 9 | 0.149812 |
1958-02-01 00:00:00 | XTEXVA01 | International Trade > Exports > Value (goods) > Total | Australia | M | 1958-02 | USD | 9 | 0.133962 |
1958-03-01 00:00:00 | XTEXVA01 | International Trade > Exports > Value (goods) > Total | Australia | M | 1958-03 | USD | 9 | 0.131655 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns value of imports in national currency or dollar converted, etc..
- Arguments:
growth = True
returns seasonally adjusted growthgrowth = False
returns monthly level values in specified currency conversion (national or dollar converted)seasonally_adjusted = True
returns seasonally adjusted monthly level values in specified currency conversion (national or dollar converted)
Example
oecd = oecd_data.OecdData( country_code = 'all', currency_code = 'CXCU', freq = 'M' )
oecd.imports_value(growth = False, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1958-01-01 00:00:00 | XTIMVA01 | International Trade > Imports > Value (goods) > Total | Australia | M | 1958-01 | USD | 9 | 0.155267 |
1958-02-01 00:00:00 | XTIMVA01 | International Trade > Imports > Value (goods) > Total | Australia | M | 1958-02 | USD | 9 | 0.150965 |
1958-03-01 00:00:00 | XTIMVA01 | International Trade > Imports > Value (goods) > Total | Australia | M | 1958-03 | USD | 9 | 0.138973 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns unemployment rates.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.unemployment_rate()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1978-02-01 00:00:00 | LRHUTTTT | Labour Force Survey - quarterly rates > Harmonised unemployment - monthly rates > Total > All persons | Australia | M | 1978-02 | PC | 0 | 6.64535 |
1978-03-01 00:00:00 | LRHUTTTT | Labour Force Survey - quarterly rates > Harmonised unemployment - monthly rates > Total > All persons | Australia | M | 1978-03 | PC | 0 | 6.30344 |
1978-04-01 00:00:00 | LRHUTTTT | Labour Force Survey - quarterly rates > Harmonised unemployment - monthly rates > Total > All persons | Australia | M | 1978-04 | PC | 0 | 6.26811 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the consumer price index.
- Arguments:
growth = True
returns yoy growthgrowth = False
returns indexgrowth = False
andseasonally_adjusted = True
returns seasonally adjusted index
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.cpi_total(growth = False, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1985-01-01 00:00:00 | CPALTT01 | Consumer Price Index > All items > Total > Total | Japan | M | 1985-01 | IDX | 0 | 85.7678 |
1985-02-01 00:00:00 | CPALTT01 | Consumer Price Index > All items > Total > Total | Japan | M | 1985-02 | IDX | 0 | 85.6816 |
1985-03-01 00:00:00 | CPALTT01 | Consumer Price Index > All items > Total > Total | Japan | M | 1985-03 | IDX | 0 | 85.6816 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the consumer price index for cities.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.cpi_city_total()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1961-01-01 00:00:00 | CPALCY01 | Consumer Price Index > All items > All items: City > Total | Canada | M | 1961-01 | IDX | 0 | 13.4288 |
1961-02-01 00:00:00 | CPALCY01 | Consumer Price Index > All items > All items: City > Total | Canada | M | 1961-02 | IDX | 0 | 13.4288 |
1961-03-01 00:00:00 | CPALCY01 | Consumer Price Index > All items > All items: City > Total | Canada | M | 1961-03 | IDX | 0 | 13.3779 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
OecdData( country_code, **args ).cpi_non_food_non_energy(growth = False, seasonally_adjusted = True)
- Returns non-food and non-energy consumer price index .
- Arguments:
growth = True
returns yoy growthgrowth = False
returns indexgrowth = False
andseasonally_adjusted = True
returns seasonally adjusted index
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.cpi_non_food_non_energy(growth = False, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1957-01-01 00:00:00 | CPGRLE01 | Consumer Price Index > OECD Groups > All items non-food non-energy > Total | United States | M | 1957-01 | IDX | 0 | 11.7649 |
1957-02-01 00:00:00 | CPGRLE01 | Consumer Price Index > OECD Groups > All items non-food non-energy > Total | United States | M | 1957-02 | IDX | 0 | 11.8062 |
1957-03-01 00:00:00 | CPGRLE01 | Consumer Price Index > OECD Groups > All items non-food non-energy > Total | United States | M | 1957-03 | IDX | 0 | 11.8474 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns consumer price index for energy (fuel, electricity, etc.).
- Arguments:
growth = True
returns yoy growthgrowth = False
returns indexgrowth = False
andseasonally_adjusted = True
returns seasonally adjusted index
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.cpi_energy(growth = False, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1991-01-01 00:00:00 | CPGREN01 | Consumer Price Index > OECD Groups > Energy (Fuel, electricity & gasoline) > Total | Germany | M | 1991-01 | IDX | 0 | 46.028 |
1991-02-01 00:00:00 | CPGREN01 | Consumer Price Index > OECD Groups > Energy (Fuel, electricity & gasoline) > Total | Germany | M | 1991-02 | IDX | 0 | 45.7485 |
1991-03-01 00:00:00 | CPGREN01 | Consumer Price Index > OECD Groups > Energy (Fuel, electricity & gasoline) > Total | Germany | M | 1991-03 | IDX | 0 | 44.0713 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns national business tendency survey for given sector.
- Sector arguments:
- (default) retail
- construction
- services
- manufacturing
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.business_tendency_survey('retail')
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1996-01-01 00:00:00 | BRCICP02 | Business tendency surveys (retail trade) > Confidence indicators > Composite indicators > National indicator | Austria | M | 1996-01 | PC | 0 | -19.4 |
1996-02-01 00:00:00 | BRCICP02 | Business tendency surveys (retail trade) > Confidence indicators > Composite indicators > National indicator | Austria | M | 1996-02 | PC | 0 | -15.1 |
1996-03-01 00:00:00 | BRCICP02 | Business tendency surveys (retail trade) > Confidence indicators > Composite indicators > National indicator | Austria | M | 1996-03 | PC | 0 | -13.4 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns national consumer opinion survey.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.consumer_opinion_survey()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1974-09-01 00:00:00 | CSCICP02 | Consumer opinion surveys > Confidence indicators > Composite indicators > National indicator | Australia | M | 1974-09 | PC | 0 | -9 |
1974-10-01 00:00:00 | CSCICP02 | Consumer opinion surveys > Confidence indicators > Composite indicators > National indicator | Australia | M | 1974-10 | PC | 0 | -9 |
1974-11-01 00:00:00 | CSCICP02 | Consumer opinion surveys > Confidence indicators > Composite indicators > National indicator | Australia | M | 1974-11 | PC | 0 | -8 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the quarterly GDP deflator. Not available for all countries.
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_deflator()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | NAGIGP01 | National Accounts > National Accounts Deflators > Gross Domestic Product > GDP Deflator | Australia | Q | 1960-Q1 | IDX | 0 | 6.78408 |
1960-04-01 00:00:00 | NAGIGP01 | National Accounts > National Accounts Deflators > Gross Domestic Product > GDP Deflator | Australia | Q | 1960-Q2 | IDX | 0 | 6.93289 |
1960-07-01 00:00:00 | NAGIGP01 | National Accounts > National Accounts Deflators > Gross Domestic Product > GDP Deflator | Australia | Q | 1960-Q3 | IDX | 0 | 6.9521 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns total GDP at constant prices.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_total(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP01 | National Accounts > GDP by Expenditure > Constant Prices > Gross Domestic Product - Total | Australia | Q | 1959-Q3 | AUD | 9 | 62.496 |
1959-10-01 00:00:00 | NAEXKP01 | National Accounts > GDP by Expenditure > Constant Prices > Gross Domestic Product - Total | Australia | Q | 1959-Q4 | AUD | 9 | 63.043 |
1960-01-01 00:00:00 | NAEXKP01 | National Accounts > GDP by Expenditure > Constant Prices > Gross Domestic Product - Total | Australia | Q | 1960-Q1 | AUD | 9 | 64.683 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns GDP final consumption at constant prices.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_final_consumption(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP02 | National Accounts > GDP by Expenditure > Constant Prices > Private Final Consumption Expenditure | Australia | Q | 1959-Q3 | AUD | 9 | 33.383 |
1959-10-01 00:00:00 | NAEXKP02 | National Accounts > GDP by Expenditure > Constant Prices > Private Final Consumption Expenditure | Australia | Q | 1959-Q4 | AUD | 9 | 34.303 |
1960-01-01 00:00:00 | NAEXKP02 | National Accounts > GDP by Expenditure > Constant Prices > Private Final Consumption Expenditure | Australia | Q | 1960-Q1 | AUD | 9 | 35.111 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns government consumption at constant prices.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_government_consumption(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP03 | National Accounts > GDP by Expenditure > Constant Prices > Government Final Consumption Expenditure | Australia | Q | 1959-Q3 | AUD | 9 | 9.626 |
1959-10-01 00:00:00 | NAEXKP03 | National Accounts > GDP by Expenditure > Constant Prices > Government Final Consumption Expenditure | Australia | Q | 1959-Q4 | AUD | 9 | 9.56 |
1960-01-01 00:00:00 | NAEXKP03 | National Accounts > GDP by Expenditure > Constant Prices > Government Final Consumption Expenditure | Australia | Q | 1960-Q1 | AUD | 9 | 10.004 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns fixed capital formation at constant prices.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_fixed_capital_formation(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP04 | National Accounts > GDP by Expenditure > Constant Prices > Gross Fixed Capital Formation | Australia | Q | 1959-Q3 | AUD | 9 | 10.278 |
1959-10-01 00:00:00 | NAEXKP04 | National Accounts > GDP by Expenditure > Constant Prices > Gross Fixed Capital Formation | Australia | Q | 1959-Q4 | AUD | 9 | 9.984 |
1960-01-01 00:00:00 | NAEXKP04 | National Accounts > GDP by Expenditure > Constant Prices > Gross Fixed Capital Formation | Australia | Q | 1960-Q1 | AUD | 9 | 10.25 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns export value for GDP calculation.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_exports(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP06 | National Accounts > GDP by Expenditure > Constant Prices > Exports of Goods and Services | Australia | Q | 1959-Q3 | AUD | 9 | 3.991 |
1959-10-01 00:00:00 | NAEXKP06 | National Accounts > GDP by Expenditure > Constant Prices > Exports of Goods and Services | Australia | Q | 1959-Q4 | AUD | 9 | 5.172 |
1960-01-01 00:00:00 | NAEXKP06 | National Accounts > GDP by Expenditure > Constant Prices > Exports of Goods and Services | Australia | Q | 1960-Q1 | AUD | 9 | 4.603 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns import value for GDP calculation.
- Arguments:
growth = True
returns seasonally adjusted yoy growthgrowth = False
andindex = True
returns seasonally adjusted indexgrowth = False
andindex = False
returns seasonally adjusted level values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'Q' )
oecd.gdp_imports(growth = False, index = False)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1959-07-01 00:00:00 | NAEXKP07 | National Accounts > GDP by Expenditure > Constant Prices > Less: Imports of Goods and Services | Australia | Q | 1959-Q3 | AUD | 9 | 3.226 |
1959-10-01 00:00:00 | NAEXKP07 | National Accounts > GDP by Expenditure > Constant Prices > Less: Imports of Goods and Services | Australia | Q | 1959-Q4 | AUD | 9 | 3.422 |
1960-01-01 00:00:00 | NAEXKP07 | National Accounts > GDP by Expenditure > Constant Prices > Less: Imports of Goods and Services | Australia | Q | 1960-Q1 | AUD | 9 | 3.58 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
OecdData( country_code, **args ).total_manufacturing_index( index = True, seasonally_adjusted = True )
- Returns total manufacturing index.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.total_manufacturing_index(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1956-01-01 00:00:00 | PRMNTO01 | Production > Manufacturing > Total manufacturing > Total manufacturing | Austria | M | 1956-01 | IDX | 0 | 11.2315 |
1956-02-01 00:00:00 | PRMNTO01 | Production > Manufacturing > Total manufacturing > Total manufacturing | Austria | M | 1956-02 | IDX | 0 | 11.0611 |
1956-03-01 00:00:00 | PRMNTO01 | Production > Manufacturing > Total manufacturing > Total manufacturing | Austria | M | 1956-03 | IDX | 0 | 11.2976 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
OecdData( country_code, **args ).total_industry_production_ex_construction(index = True, seasonally_adjusted = True)
- Returns total industry production excluding construction.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.total_industrial_production_ex_construction(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1955-01-01 00:00:00 | PRINTO01 | Production > Industry > Total industry > Total industry excluding construction | Austria | M | 1955-01 | IDX | 0 | 10.7655 |
1955-02-01 00:00:00 | PRINTO01 | Production > Industry > Total industry > Total industry excluding construction | Austria | M | 1955-02 | IDX | 0 | 10.7772 |
1955-03-01 00:00:00 | PRINTO01 | Production > Industry > Total industry > Total industry excluding construction | Austria | M | 1955-03 | IDX | 0 | 10.7544 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns total construction index.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.total_construction(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1996-01-01 00:00:00 | PRCNTO01 | Production > Construction > Total construction > Total | Austria | M | 1996-01 | IDX | 0 | 56.1 |
1996-02-01 00:00:00 | PRCNTO01 | Production > Construction > Total construction > Total | Austria | M | 1996-02 | IDX | 0 | 57.8 |
1996-03-01 00:00:00 | PRCNTO01 | Production > Construction > Total construction > Total | Austria | M | 1996-03 | IDX | 0 | 57 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns total retail trade index.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.total_retail_trade(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1955-01-01 00:00:00 | SLRTTO02 | Sales > Retail trade > Total retail trade > Value | Austria | M | 1955-01 | IDX | 0 | 5.65006 |
1955-02-01 00:00:00 | SLRTTO02 | Sales > Retail trade > Total retail trade > Value | Austria | M | 1955-02 | IDX | 0 | 5.72288 |
1955-03-01 00:00:00 | SLRTTO02 | Sales > Retail trade > Total retail trade > Value | Austria | M | 1955-03 | IDX | 0 | 5.63975 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
OecdData( country_code, **args ).passenger_car_registrations(index = True, seasonally_adjusted = True)
- Returns index for passenger car registrations.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.passenger_car_registrations(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1994-01-01 00:00:00 | SLRTCR03 | Sales > Retail trade > Car registration > Passenger cars | Australia | M | 1994-01 | IDX | 0 | 83.9795 |
1994-02-01 00:00:00 | SLRTCR03 | Sales > Retail trade > Car registration > Passenger cars | Australia | M | 1994-02 | IDX | 0 | 86.7998 |
1994-03-01 00:00:00 | SLRTCR03 | Sales > Retail trade > Car registration > Passenger cars | Australia | M | 1994-03 | IDX | 0 | 85.8574 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
OecdData( country_code, **args ).construction_permits_issued(index = True, seasonally_adjusted = True)
- Returns index for construction permits issued.
- Arguments:
index = True
returns indexindex = False
returns monthly or quarterly levels depending on frequencyseasonally\_adjusted = True
returns seasonally adjusted values
Example
oecd = oecd_data.OecdData( country_code = 'all', freq = 'M' )
oecd.construction_permits_issued(index = True, seasonally_adjusted = True)
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1955-01-01 00:00:00 | ODCNPI03 | Orders > Construction > Permits issued > Dwellings / Residential buildings | Australia | M | 1955-01 | IDX | 0 | 32.3003 |
1955-02-01 00:00:00 | ODCNPI03 | Orders > Construction > Permits issued > Dwellings / Residential buildings | Australia | M | 1955-02 | IDX | 0 | 40.88 |
1955-03-01 00:00:00 | ODCNPI03 | Orders > Construction > Permits issued > Dwellings / Residential buildings | Australia | M | 1955-03 | IDX | 0 | 35.8331 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns national economic situation survey.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.economic_situation_survey()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1978-01-01 00:00:00 | CSESFT | Future tendency | United States | M | 1978-01 | PC | 0 | 8 |
1978-02-01 00:00:00 | CSESFT | Future tendency | United States | M | 1978-02 | PC | 0 | 11 |
1978-03-01 00:00:00 | CSESFT | Future tendency | United States | M | 1978-03 | PC | 0 | -3 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns national consumer confidence survey.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.consumer_confidence_survey()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | CSCICP02 | National indicator | United States | M | 1960-01 | PC | 0 | 107.594 |
1960-02-01 00:00:00 | CSCICP02 | National indicator | United States | M | 1960-02 | PC | 0 | 105.191 |
1960-03-01 00:00:00 | CSCICP02 | National indicator | United States | M | 1960-03 | PC | 0 | 102.788 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns consumer price inflation survey.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'M' )
oecd.consumer_price_inflation_survey()
TIME | SUBJECT | Subject | Country | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|
1978-01-01 00:00:00 | CSINFT | Future tendency | United States | M | 1978-01 | PC | 0 | 6.1 |
1978-02-01 00:00:00 | CSINFT | Future tendency | United States | M | 1978-02 | PC | 0 | 8.5 |
1978-03-01 00:00:00 | CSINFT | Future tendency | United States | M | 1978-03 | PC | 0 | 7.5 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the current account as value or as percent of GDP.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q' )
oecd.current_account(percent_of_gdp = True)
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6BLTT02 | Current account balance as % of GDP | United States | STSA | Indicators in percentage | Q | 1960-Q1 | PC | 0 | 0.257994 |
1960-04-01 00:00:00 | B6BLTT02 | Current account balance as % of GDP | United States | STSA | Indicators in percentage | Q | 1960-Q2 | PC | 0 | 0.391809 |
1960-07-01 00:00:00 | B6BLTT02 | Current account balance as % of GDP | United States | STSA | Indicators in percentage | Q | 1960-Q3 | PC | 0 | 0.612899 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the imported, exported goods or good balance of the current account.
- xm arguments:
- (default) balance
- exports
- imports
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q' )
oecd.goods_balance(xm = 'exports')
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6CRTD01 | Goods, credits (exports) | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | 4664 |
1960-04-01 00:00:00 | B6CRTD01 | Goods, credits (exports) | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | 5058 |
1960-07-01 00:00:00 | B6CRTD01 | Goods, credits (exports) | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | 4736 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the imported, exported services or services balance of the current account.
- xm arguments:
- (default) balance
- exports
- imports
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q' )
oecd.goods_balance(xm = 'balance')
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6BLSE01 | Services, balance | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | -239 |
1960-04-01 00:00:00 | B6BLSE01 | Services, balance | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | -205 |
1960-07-01 00:00:00 | B6BLSE01 | Services, balance | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | -758 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the assets, liabilities or net financial account in specified currency.
- assets\_or\_liabs arguments:
- (default) None
- assets
- liabs
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.financial_account(assets_or_liabs = None)
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FATT01 | Financial account, net | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | 358 |
1960-04-01 00:00:00 | B6FATT01 | Financial account, net | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | 414 |
1960-07-01 00:00:00 | B6FATT01 | Financial account, net | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | 159 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the assets, liabilities or net direct investment of the financial account.
- (default) None
- assets
- liabs
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.direct_investment(assets_or_liabs = None)
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FADI01 | Direct investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | 591 |
1960-04-01 00:00:00 | B6FADI01 | Direct investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | 560 |
1960-07-01 00:00:00 | B6FADI01 | Direct investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | 595 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the assets, liabilities or net portfolio investment of the financial account.
- (default) None
- assets
- liabs
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.portfolio_investment(assets_or_liabs = None)
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FAPI10 | Portfolio investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | 69 |
1960-04-01 00:00:00 | B6FAPI10 | Portfolio investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | 139 |
1960-07-01 00:00:00 | B6FAPI10 | Portfolio investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | -27 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the assets, liabilities or net other investments of the financial account.
- (default) None
- assets
- liabs
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.other_investment(assets_or_liabs = None)
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FAOI01 | Other investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | -143 |
1960-04-01 00:00:00 | B6FAOI01 | Other investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | -110 |
1960-07-01 00:00:00 | B6FAOI01 | Other investment, net | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | 331 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the net financial derivatives of the financial account.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.financial_derivatives()
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FAFD01 | Financial derivatives, net | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | 0 |
1960-04-01 00:00:00 | B6FAFD01 | Financial derivatives, net | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | 0 |
1960-07-01 00:00:00 | B6FAFD01 | Financial derivatives, net | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the net reserve assets of the financial account.
Example
oecd = oecd_data.OecdData( country_code = 'USA', freq = 'Q', currency = 'CXCU' )
oecd.reserve_assets()
TIME | SUBJECT | Subject | Country | MEASURE | Measure | FREQUENCY | TIME | Unit Code | PowerCode Code | Value |
---|---|---|---|---|---|---|---|---|---|---|
1960-01-01 00:00:00 | B6FARA01 | Reserve assets, net acquisition of financial assets | United States | CXCU | US-Dollar converted | Q | 1960-Q1 | USD | 6 | -159 |
1960-04-01 00:00:00 | B6FARA01 | Reserve assets, net acquisition of financial assets | United States | CXCU | US-Dollar converted | Q | 1960-Q2 | USD | 6 | -175 |
1960-07-01 00:00:00 | B6FARA01 | Reserve assets, net acquisition of financial assets | United States | CXCU | US-Dollar converted | Q | 1960-Q3 | USD | 6 | -740 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The available EIA data so far only includes timeseries from the EIA petroleum data set. No API key is required but a future version may feature the option to use the EIA API directly.
Not all timeseries are available at all frequencies.
For available petroleum time series codes see here.
from finpie.economic_data import eia_data # or import finpie
# Example for instantiating class for Australia and the USA at monthly frequency with national currencies
eia = eia_data.EiaData()
# or eia = finpie.EiaData(...)
eia.freq = 'm' # for monthly frequency if available (default)
# eia.freq = 'a' for annual frequency if available
eia.barrels = 'mbblpd' # (default)
# eia.barrels = 'mbbl'
eia.id = False # default, id = True returns EIA series id for column names
- Returns timeseries for the given series id.
series
options: any EIA petroleum series id
Example
eia = eia_data.EiaData()
eia.eia_petroleum_series( series_id, sheet_name = 'all')
- Returns timeseries for the weekly EIA balance.
series
options:- 'all' - returns all series (default)
- 'crude oil production' - returns weekly crude oil production
- 'refiner inputs and utilisation' - returns refinery inputs, weekly capacity and utilisation
- 'refiner and blender net inputs' - returns net input of blending components
- 'refiner and blender net production' - returns net refinery product production
- 'ethanol plant production' - returns fuel ethanol production
- 'stocks' - returns weekly crude and product stocks
- 'days of supply' - returns number of days of supply available
- 'imports' - returns weekly imports of crude and products
- 'exports' - returns weekly exports of crude and products
- 'imports' - returns weekly imports of crude and products
- 'net imports incl spr' - returns weekly net imports of crude and total products
- 'product supplied' - returns volume of supplied products
sma
options:-
sma = True
returns 4 week averages -
sma = False
returns actual values
Example
eia = eia_data.EiaData()
eia.weekly_balance(series = 'all')
crude_oil_production | refiner_inputs_and_utilisation | refiner_and_blender_net_inputs | ... | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weekly U.S. Field Production of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Refiner Net Input of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Gross Inputs into Refineries (Thousand Barrels per Day) | Weekly U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) | Weekly U.S. Percent Utilization of Refinery Operable Capacity (Percent) | Weekly U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly U.S. Imports of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Commercial Crude Oil Imports Excluding SPR (Thousand Barrels per Day) | Weekly U.S. Crude Oil Imports by SPR (Thousand Barrels per Day) | Weekly U.S. Crude Oil Imports for SPR by Others (Thousand Barrels per Day) | ... | |
date | ... | ||||||||||
1982-08-20 | NaN | 11722 | NaN | NaN | NaN | NaN | NaN | 3459 | 172 | NaN | ... |
1982-08-27 | NaN | 11918 | NaN | NaN | NaN | NaN | NaN | 3354 | 339 | NaN | ... |
1982-09-24 | NaN | 12375 | NaN | NaN | NaN | NaN | NaN | 3494 | 176 | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns timeseries for the weekly EIA balance.
- Arguments:
breakdown = False
returns week ending stocksbreakdown = True
returns a breakdown by production, imports, exports, etc. of crude and products
Example
eia = eia_data.EiaData()
eia.last_weekly_balance( breakdown = False )
supply | 9/11/20 | 9/4/20 | difference_week_ago | percent_change_week_ago | 9/13/19 | difference_year_ago | percent_change_year_ago | |
---|---|---|---|---|---|---|---|---|
0 | Crude Oil | 1141.778 | 1148.294 | -6.516 | -0.6 | 1061.944 | 79.833 | 7.5 |
1 | Commercial (Excluding SPR) | 496.045 | 500.434 | -4.389 | -0.9 | 417.126 | 78.918 | 18.9 |
2 | Strategic Petroleum Reserve (SPR) | 645.733 | 647.860 | -2.127 | -0.3 | 644.818 | 0.915 | 0.1 |
3 | Total Motor Gasoline | 231.524 | 231.905 | -0.381 | -0.2 | 229.685 | 1.840 | 0.8 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly crude production by PADD and state.
Example
eia = eia_data.EiaData()
eia.crude_production()
Output
U.S. Field Production of Crude Oil (Thousand Barrels per Day) | East Coast (PADD 1) Field Production of Crude Oil (Thousand Barrels per Day) | Florida Field Production of Crude Oil (Thousand Barrels per Day) | New York Field Production of Crude Oil (Thousand Barrels per Day) | Pennsylvania Field Production of Crude Oil (Thousand Barrels per Day) | Virginia Field Production of Crude Oil (Thousand Barrels per Day) | ... | |
---|---|---|---|---|---|---|---|
date | ... | ||||||
1920-01-15 | 1097.0 | NaN | NaN | NaN | NaN | NaN | ... |
1920-02-15 | 1145.0 | NaN | NaN | NaN | NaN | NaN | ... |
1920-03-15 | 1167.0 | NaN | NaN | NaN | NaN | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly crude supply and disposition.
series
options:- 'all' - returns all series (default)
- 'supply' - returns weekly crude oil production
- 'disposition' - returns stock change, exports, refinery and blender net input of crude oil, etc.
- 'ending stocks' - returns monthly crude ending stocks
- 'spr stocks' - returns month end SPR stocks
- 'spr imports' - returns monthly SPR imports
Example
eia = eia_data.EiaData()
eia.crude_supply_and_disposition(series = 'supply')
U.S. Field Production of Crude Oil (Thousand Barrels) | Alaska Field Production of Crude Oil (Thousand Barrels) | Lower 48 States Field Production of Crude Oil (Thousand Barrels) | U.S. Imports of Crude Oil (Thousand Barrels) | U.S. Crude Oil Imports Excluding SPR (Thousand Barrels) | U.S. Crude Oil SPR Imports from All Countries (Thousand Barrels) | U.S. Supply Adjustment of Crude Oil (Thousand Barrels) | |
---|---|---|---|---|---|---|---|
date | |||||||
1920-01-15 | 34008.0 | NaN | NaN | 6294.0 | NaN | NaN | NaN |
1920-02-15 | 33193.0 | NaN | NaN | 4940.0 | NaN | NaN | NaN |
1920-03-15 | 36171.0 | NaN | NaN | 6503.0 | NaN | NaN | NaN |
1920-04-15 | 34945.0 | NaN | NaN | 6186.0 | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly rig counts.
Example
eia = eia_data.EiaData()
eia.rig_count()
U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Count) | U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Count) | U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Count) | U.S. Crude Oil Rotary Rigs in Operation (Count) | U.S. Natural Gas Rotary Rigs in Operation (Count) | U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation (Count) | |
---|---|---|---|---|---|---|
date | ||||||
1973-01-15 | 1219.0 | 1120.0 | 99.0 | NaN | NaN | 1549.0 |
1973-02-15 | 1126.0 | 1037.0 | 89.0 | NaN | NaN | 1677.0 |
1973-03-15 | 1049.0 | 959.0 | 90.0 | NaN | NaN | 1805.0 |
1973-04-15 | 993.0 | 914.0 | 79.0 | NaN | NaN | 1898.0 |
... | ... | ... | ... | ... | ... | ... |
- Returns annual proven crude reserves and discoveries (last data point is from 2018).
Example
eia = eia_data.EiaData()
eia.crude_reserves()
Output
U.S. Crude Oil Proved Reserves (Million Barrels) | U.S. Crude Oil Reserves Adjustments (Million Barrels) | U.S. Crude Oil Reserves Revision Increases (Million Barrels) | U.S. Crude Oil Reserves Revision Decreases (Million Barrels) | U.S. Crude Oil Reserves Sales (Million Barrels) | U.S. Crude Oil Reserves Acquisitions (Million Barrels) | U.S. Crude Oil Reserves Extensions and Discoveries (Million Barrels) | U.S. Crude Oil Reserves Extensions (Million Barrels) | U.S. Crude Oil Reserves New Field Discoveries (Million Barrels) | U.S. Crude Oil New Reservoir Discoveries in Old Fields (Million Barrels) | U.S. Crude Oil Estimated Production from Reserves (Million Barrels) | |
---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||
1900-06-30 | 2900 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1901-06-30 | 3000 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1902-06-30 | 3200 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1903-06-30 | 3400 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns weekly import and export data.
-
series = 'all'
- returns weekly refinery inputs and net inputs -
series = 'inputs'
- returns weekly crude inputs, capcaity and utilisation -
series = 'net'
- returns weekly net inputs of blending components -
sma = True
- returns 4 week average
-
Arguments:
Example
eia = eia_data.EiaData()
eia.weekly_refinery_inputs( series = 'inputs' )
Weekly U.S. Refiner Net Input of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Gross Inputs into Refineries (Thousand Barrels per Day) | Weekly U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) | Weekly U.S. Percent Utilization of Refinery Operable Capacity (Percent) | |
---|---|---|---|---|
date | ||||
1982-08-20 | 11722.0 | NaN | NaN | NaN |
1982-08-27 | 11918.0 | NaN | NaN | NaN |
1982-09-24 | 12375.0 | NaN | NaN | NaN |
1982-10-01 | 12303.0 | NaN | NaN | NaN |
... | ... | ... | ... | ... |
- Returns monthly refinery utilisation.
Example
eia = eia_data.EiaData()
eia.refinery_utilisation()
U.S. Gross Inputs to Refineries (Thousand Barrels Per Day) | U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) | U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day) | U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day) | U.S. Percent Utilization of Refinery Operable Capacity | |
---|---|---|---|---|---|
date | |||||
1985-01-15 | 11583.0 | 15659.0 | 14361.0 | 1298.0 | 74.0 |
1985-02-15 | 11485.0 | 15559.0 | 14293.0 | 1266.0 | 73.8 |
1985-03-15 | 11484.0 | 15582.0 | 14268.0 | 1314.0 | 73.7 |
1985-04-15 | 11969.0 | 15640.0 | 14605.0 | 1035.0 | 76.5 |
... | ... | ... | ... | ... | ... |
- Returns monthly refinery yield by product.
Example
eia = eia_data.EiaData()
eia.refinery_yield()
U.S. Refinery Yield of Hydrocarbon Gas Liquids (Percent) | U.S. Refinery Yield of Finished Motor Gasoline (Percent) | U.S. Refinery Yield of Aviation Gasoline (Percent) | U.S. Refinery Yield of Kerosene-Type Jet Fuel (Percent) | U.S. Refinery Yield of Kerosene (Percent) | U.S. Refinery Yield of Distillate Fuel Oil (Percent) | ... | |
---|---|---|---|---|---|---|---|
date | |||||||
1993-01-15 | NaN | 47.5 | 0.1 | 9.7 | 0.5 | 21.6 | ... |
1993-02-15 | NaN | 47.1 | 0.1 | 9.7 | 0.5 | 20.8 | ... |
1993-03-15 | NaN | 45.4 | 0.2 | 9.7 | 0.4 | 21.3 | ... |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly crude acquistion cost of refiners.
Example
eia = eia_data.EiaData()
eia.crude_acquisition_cost()
U.S. Crude Oil Composite Acquisition Cost by Refiners (Dollars per Barrel) | U.S. Crude Oil Domestic Acquisition Cost by Refiners (Dollars per Barrel) | U.S. Crude Oil Imported Acquisition Cost by Refiners (Dollars per Barrel) | |
---|---|---|---|
date | |||
1974-01-15 | 7.46 | 6.72 | 9.59 |
1974-02-15 | 8.57 | 7.08 | 12.45 |
1974-03-15 | 8.68 | 7.05 | 12.73 |
1974-04-15 | 9.13 | 7.21 | 12.72 |
... | ... | ... | ... |
- Returns monthly crude inputs quality.
Example
eia = eia_data.EiaData()
eia.crude_inputs_quality()
U.S. Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent) | U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees) | |
---|---|---|
date | ||
1985-01-15 | 0.88 | 32.64 |
1985-02-15 | 0.88 | 32.87 |
1985-03-15 | 0.93 | 32.75 |
1985-04-15 | 0.90 | 32.58 |
... | ... | ... |
- Returns annual number of U.S. refineries and capacity by refinery unit.
Example
eia = eia_data.EiaData()
eia.refineries()
U.S. Number of Operable Refineries as of January 1 (Count) | U.S. Number of Operating Refineries as of January 1 (Count) | U.S. Number of Idle Refineries as of January 1 (Count) | U.S. Refinery Annual Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day) | U.S. Refinery Annual Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day) | U.S. Refinery Annual Idle Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day) | ... | |
---|---|---|---|---|---|---|---|
date | |||||||
1982-06-30 | 301.0 | 254.0 | 47.0 | 17889734.0 | 16103579.0 | 1786155.0 | ... |
1983-06-30 | 258.0 | 233.0 | 25.0 | 16859337.0 | 14960647.0 | 1898690.0 | ... |
1984-06-30 | 247.0 | 214.0 | 33.0 | 16137141.0 | 14837685.0 | 1299456.0 | ... |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns weekly import and export data.
-
padds = True
- returns weekly imports by PADD -
padds = True
- returns weekly imports and exports by product -
sma = True
- returns 4-week average
-
Arguments:
Example
eia = eia_data.EiaData()
eia.weekly_xm( padds = True )
Weekly U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly East Coast (PADD 1) Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly Midwest (PADD 2) Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly Gulf Coast (PADD 3) Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly Rocky Mountain (PADD 4) Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | Weekly West Coast (PADD 5) Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | |
---|---|---|---|---|---|---|
date | ||||||
1991-02-08 | 6877.0 | NaN | NaN | NaN | NaN | NaN |
1991-02-15 | 6573.0 | NaN | NaN | NaN | NaN | NaN |
1991-02-22 | 6221.0 | NaN | NaN | NaN | NaN | NaN |
1991-03-01 | 6188.0 | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... |
- Returns monthly import and export data.
-
net = True
- returns monthly net imports by country of origin -
net = False
andxm = 'both'
- returns monthly imports and exports by product -
net = False
andxm = 'm'
- returns monthly imports by product -
net = False
andxm = 'x'
- returns monthly exports by product -
net = False
andxm = 'm'
andby = True
- returns monthly imports by country of origin -
net = False
andxm = 'x'
andby = True
- returns monthly exports by destination
-
Arguments:
Example
eia = eia_data.EiaData()
eia.monthly_xm( net = True )
U.S. Net Imports of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Net Imports from Persian Gulf Countries of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Net Imports from OPEC Countries of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Net Imports from Algeria of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Net Imports from Angola of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Net Imports from Congo (Brazzaville) of Crude Oil and Petroleum Products (Thousand Barrels per Day) | |
---|---|---|---|---|---|---|
date | ||||||
1973-01-15 | 5646.0 | NaN | NaN | NaN | NaN | NaN |
1973-02-15 | 6246.0 | NaN | NaN | NaN | NaN | NaN |
1973-03-15 | 6386.0 | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... |
- Returns weekly imports by country.
-
sma = True
- returns 4 week average
-
Arguments:
Example
eia = eia_data.EiaData()
eia.weekly_top_imports_by_country( sma = False )
Weekly U.S. Imports from Canada of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Imports from Saudi Arabia of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Imports from Mexico of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Imports from Iraq of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Imports from Venezuela of Crude Oil (Thousand Barrels per Day) | Weekly U.S. Imports from Colombia of Crude Oil (Thousand Barrels per Day) | ... | |
---|---|---|---|---|---|---|---|
date | |||||||
2010-06-04 | 1869.0 | 1230.0 | 1284.0 | 538.0 | 638.0 | 259.0 | ... |
2010-06-11 | 2320.0 | 488.0 | 871.0 | 369.0 | 630.0 | 243.0 | ... |
2010-06-18 | 1875.0 | 1048.0 | 1289.0 | 1069.0 | 542.0 | 448.0 | ... |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly crude import quality.
Example
eia = eia_data.EiaData()
eia.crude_quality()
U.S. Percent Total Imported by API Gravity of Crude Gravity 20.0 percent or less (%) | U.S. Percent Total Imported by API Gravity of Crude Gravity 20.1 to 25.0 percent (%) | U.S. Percent Total Imported by API Gravity of Crude Gravity 25.1 to 30.0 percent (%) | U.S. Percent Total Imported by API Gravity of Crude Gravity 30.1 to 35.0 percent (%) | U.S. Percent Total Imported by API Gravity of Crude Gravity 35.1 to 40.0 percent (%) | U.S. Percent Total Imported by API Gravity of Crude Gravity 40.1 to 45.0% | U.S. Percent Total Imported by API Gravity of Crude Gravity 45.1% or more (%) | |
---|---|---|---|---|---|---|---|
date | |||||||
1983-01-15 | 2.72 | 32.83 | 6.44 | 30.73 | 15.98 | 9.30 | 2.00 |
1983-02-15 | 5.92 | 27.70 | 10.92 | 23.09 | 19.97 | 8.65 | 3.75 |
1983-03-15 | 4.10 | 26.62 | 9.17 | 23.10 | 26.10 | 8.07 | 2.83 |
1983-04-15 | 3.76 | 21.87 | 10.50 | 20.91 | 27.77 | 10.31 | 4.88 |
... | ... | ... | ... | ... | ... | ... | ... |
- Returns weekly crude and product stocks.
-
padds = True
- returns weekly stocks by PADD for crude and a coarse product categories -
sma = True
- returns 4-week average
-
Arguments:
Example
eia = eia_data.EiaData()
eia.weekly_stocks( padds = True )
commercial_crude | distillates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weekly Cushing, OK Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly East Coast (PADD 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly Gulf Coast (PADD 3) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly Midwest (PADD 2) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly Rocky Mountain (PADD 4) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly U.S. Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly West Coast (PADD 5) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels) | Weekly Central Atlantic (PADD 1B) Ending Stocks of Distillate Fuel Oil (Thousand Barrels) | ... | ||
date | ... | |||||||||
1982-08-20 | NaN | NaN | NaN | NaN | NaN | 338764.0 | NaN | NaN | ... | |
1982-08-27 | NaN | NaN | NaN | NaN | NaN | 336138.0 | NaN | NaN | ... | |
1982-09-24 | NaN | NaN | NaN | NaN | NaN | 335586.0 | NaN | NaN | ... | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly product stocks.
-
padds = True
- returns monthly stocks by PADD for crude and a coarse product categories
-
Arguments:
Example
eia = eia_data.EiaData()
eia.monthly_product_stocks( padds = False )
U.S. Ending Stocks of Total Gasoline (Thousand Barrels) | U.S. Ending Stocks of Distillate Fuel Oil (Thousand Barrels) | U.S. Ending Stocks of Distillate Fuel Oil, 0 to 15 ppm Sulfur (Thousand Barrels) | U.S. Ending Stocks of Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur (Thousand Barrels) | U.S. Ending Stocks of Distillate Fuel Oil, Greater Than 500 ppm Sulfur (Thousand Barrels) | U.S. Ending Stocks of Residual Fuel Oil (Thousand Barrels) | U.S. Ending Stocks of Propane and Propylene (Thousand Barrels) | ... | |
---|---|---|---|---|---|---|---|---|
date | ||||||||
1936-01-15 | NaN | NaN | NaN | NaN | NaN | 83083.0 | NaN | ... |
1936-02-15 | NaN | NaN | NaN | NaN | NaN | 81563.0 | NaN | ... |
1936-03-15 | NaN | NaN | NaN | NaN | NaN | 80870.0 | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly refinery stocks.
Example
eia = eia_data.EiaData()
eia.monthly_refinery_stocks()
U.S. Crude Oil and Petroleum Products Stocks at Refineries (Thousand Barrels) | U.S. Crude Oil Stocks at Refineries (Thousand Barrels) | U.S. Total Petroleum Products Stocks at Refineries (Thousand Barrels) | U.S. Hydrocarbon Gas Liquids Stocks at Refineries (Thousand Barrels) | U.S. Refinery Stocks of Natural Gas Liquids (Thousand Barrels) | U.S. Refinery Stocks of Ethane (Thousand Barrels) | U.S. Refinery Stocks of Propane (Thousand Barrels) | U.S. Refinery Stocks of Normal Butane (Thousand Barrels) | ... | |
---|---|---|---|---|---|---|---|---|---|
date | |||||||||
1981-01-15 | NaN | 119156.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1981-02-15 | NaN | 125167.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1981-03-15 | NaN | 128448.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly tank and pipeline stocks.
Example
eia = eia_data.EiaData()
eia.monthly_tank_and_pipeline_stocks()
U.S. Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | East Coast (PADD 1) Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | Midwest (PADD 2) Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | Cushing, OK Ending Stocks of Crude Oil (Thousand Barrels) | Gulf Coast (PADD 3) Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | Rocky Mountain (PADD 4) Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | West Coast (PADD 5) Crude Oil Stocks at Tank Farms and Pipelines (Thousand Barrels) | ... | |
---|---|---|---|---|---|---|---|---|
date | ||||||||
1981-01-15 | 211030.0 | 2615.0 | 70627.0 | NaN | 94631.0 | 13169.0 | 29988.0 | ... |
1981-02-15 | 212835.0 | 3684.0 | 67137.0 | NaN | 96435.0 | 13458.0 | 32121.0 | ... |
1981-03-15 | 222457.0 | 2570.0 | 71186.0 | NaN | 101831.0 | 13872.0 | 32998.0 | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns weekly product supplied.
-
sma = True
- returns 4-week average
-
Arguments:
Example
eia = eia_data.EiaData()
eia.weekly_product_supplied()
Weekly U.S. Product Supplied of Petroleum Products (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Finished Motor Gasoline (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Residual Fuel Oil (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Propane and Propylene (Thousand Barrels per Day) | Weekly U.S. Product Supplied of Other Oils (Thousand Barrels per Day) | ... | |
---|---|---|---|---|---|---|---|---|
date | ||||||||
1990-11-09 | 16588.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1990-11-16 | 17019.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1990-11-23 | 15686.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly product supplied.
Example
eia = eia_data.EiaData()
eia.monthly_product_supplied()
U.S. Product Supplied of Crude Oil and Petroleum Products (Thousand Barrels per Day) | U.S. Product Supplied of Crude Oil (Thousand Barrels per Day) | U.S. Product Supplied of Hydrocarbon Gas Liquids (Thousand Barrels per Day) | U.S. Product Supplied of Natural Gas Liquids (Thousand Barrels per Day) | U.S. Product Supplied of Ethane (Thousand Barrels per Day) | U.S. Product Supplied of Propane (Thousand Barrels per Day) | U.S. Product Supplied of Normal Butane (Thousand Barrels per Day) | U.S. Product Supplied of Isobutane (Thousand Barrels per Day) | ... | |
---|---|---|---|---|---|---|---|---|---|
date | |||||||||
1936-01-15 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1936-02-15 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... |
1936-03-15 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns monthly sales prices, sales volume (in thousand gallons per day) and product stocks.
-
series = 'all'
- returns sales prices, sales volume and product stocks -
series = 'retail'
- returns sales prices as dollars per gallon -
series = 'volume'
- returns sales volume in thousand gallons per day -
series = 'stocks'
- returns product stocks in thousand barrels
-
Arguments:
Example
eia = eia_data.EiaData()
eia.product_prices_sales_and_stock('retail')
U.S. Total Gasoline Through Company Outlets Price by All Sellers (Dollars per Gallon) | U.S. Regular Gasoline Through Company Outlets Price by All Sellers (Dollars per Gallon) | U.S. Gasoline Midgrade Through Company Outlets Price by All Sellers (Dollars per Gallon) | U.S. Premium Gasoline Through Company Outlets Price by All Sellers (Dollars per Gallon) | U.S. Aviation Gasoline Retail Sales by Refiners (Dollars per Gallon) | U.S. Kerosene-Type Jet Fuel Retail Sales by Refiners (Dollars per Gallon) | U.S. Propane Retail Sales by All Sellers (Dollars per Gallon) | U.S. Kerosene Retail Sales by Refiners (Dollars per Gallon) | ... | |
---|---|---|---|---|---|---|---|---|---|
date | |||||||||
1975-07-15 | NaN | NaN | NaN | NaN | NaN | 0.292 | NaN | NaN | ... |
1975-08-15 | NaN | NaN | NaN | NaN | NaN | 0.295 | NaN | NaN | ... |
1975-09-15 | NaN | NaN | NaN | NaN | NaN | 0.296 | NaN | NaN | ... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The functions below retrieve news headlines based on keyword searches from Barrons
, CNBC
, the Financial Times
, the New York Times
, Reuters
, Seeking Alpha
and the Wall Street Journal
. The keyword for Seeking Alpha is simply the relevant stock ticker.
The scrape is based on Selenium and may not be very stable if the website layouts change.
Furthermore, some of the functions can run for a long-time so it is recommended to use a reasonable datestop
value.
Some downloads may fail occasionally as access to the website could be blocked.
# Importing the NewsData class
from finpie import NewsData #
news = NewsData('XOM', 'exxon mobil')
news.head = False # default = false, ensures selenium headless mode
news.verbose = True # default = False, prints total number of collected articles
- Returns the news headlines from Barrons.com for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.barrons(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | description | newspaper | author | date_retrieved | ticker | comments | tag | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
15/09/2020 | https://www.barrons.com/articles/options-traders-are-pricing-in-an-exxon-dividend-cut-analyst-says-51600181938 | Options Traders Are Pricing In an Exxon Dividend Cut, Analyst Says | Whether Exxon can maintain its dividend is one of the most active debates right now among energy investors. The company has a strong incentive to keep making payments at current levels. | Barrons.com | Avi Salzman | 2020-09-16 13:35:26.574289 | XOM | nan | nan | exxon mobil | Barrons.comOptions Traders Are Pricing In an Exxon Dividend Cut, Analyst Sayshttps://www.barrons.com/articles/options-traders-are-pricing-in-an-exxon-dividend-cut-analyst-says-51600181938 | barrons |
13/09/2020 | https://www.wsj.com/articles/exxon-used-to-be-americas-most-valuable-company-what-happened-oil-gas-11600037243 | Exxon Used to Be America’s Most Valuable Company. What Happened? | The oil giant doubled down on oil and gas at what now looks to be the worst possible time. Investors are fleeing and workers are grumbling about the direction of a company some see as out of touch. | WSJ.com | Christopher M. Matthews | 2020-09-16 13:35:26.574289 | XOM | nan | nan | exxon mobil | WSJ.comExxon Used to Be America’s Most Valuable Company. What Happened?https://www.wsj.com/articles/exxon-used-to-be-americas-most-valuable-company-what-happened-oil-gas-11600037243 | barrons |
11/09/2020 | https://www.barrons.com/articles/where-to-find-bargains-in-oil-stocks-51599837910 | Where to Find Bargains in Oil Stocks Now | Goldman Sachs analyst likes certain refiners and Canadian oil companies. | Barrons.com | Avi Salzman | 2020-09-16 13:35:26.574289 | XOM | nan | nan | exxon mobil | Barrons.comWhere to Find Bargains in Oil Stocks Nowhttps://www.barrons.com/articles/where-to-find-bargains-in-oil-stocks-51599837910 | barrons |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from CNBC for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.cnbc(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | description | tag | author | date_retrieved | ticker | comments | newspaper | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-09-10 00:00:00 | https://www.cnbc.com/video/2020/09/10/honeywell-ceo-darius-adamczyk-on-rejoining-the-dow.html?&qsearchterm=exxon mobil | Honeywell CEO Darius Adamczyk on rejoining the Dow | S&P Dow Jones Indices said Monday that three new companies will be joining the 30-stock benchmark. Salesforce.com will replace Exxon Mobil, Amgen will replace Pfizer ... | Squawk Box U.S. | nan | 2020-09-16 14:14:43.533664 | XOM | nan | CNBC | exxon mobil | CNBCHoneywell CEO Darius Adamczyk on rejoining the Dowhttps://www.cnbc.com/video/2020/09/10/honeywell-ceo-darius-adamczyk-on-rejoining-the-dow.html?&qsearchterm=exxon mobil | cnbc |
2020-09-09 00:00:00 | https://www.cnbc.com/2020/09/09/options-market-predicts-exxon-mobils-dividend-could-be-in-danger.html?&qsearchterm=exxon mobil | Options market predicts Exxon Mobil’s dividend could be in danger | One of the most consistent dividend payers in the history of the energy trade could be in danger of having to slash its payout, according ... | Options Action | Tyler Bailey | 2020-09-16 14:14:43.533664 | XOM | nan | CNBC | exxon mobil | CNBCOptions market predicts Exxon Mobil’s dividend could be in dangerhttps://www.cnbc.com/2020/09/09/options-market-predicts-exxon-mobils-dividend-could-be-in-danger.html?&qsearchterm=exxon mobil | cnbc |
2020-09-08 00:00:00 | https://www.cnbc.com/2020/09/08/exxon-downsizes-global-empire-as-wall-street-worries-about-dividend.html?&qsearchterm=exxon mobil | Exxon downsizes global empire as Wall Street worries about dividend | Ill-timed bets on rising demand have Exxon Mobil facing a shortfall of about $48 billion through 2021, according to a Reuters tally and Wall Street ... | Oil and Gas | nan | 2020-09-16 14:14:43.533664 | XOM | nan | CNBC | exxon mobil | CNBCExxon downsizes global empire as Wall Street worries about dividendhttps://www.cnbc.com/2020/09/08/exxon-downsizes-global-empire-as-wall-street-worries-about-dividend.html?&qsearchterm=exxon mobil | cnbc |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from the Financial Times for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.ft(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | description | tag | date_retrieved | ticker | comments | author | newspaper | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-07-31 00:00:00 | /content/64d7e86e-079c-4502-a9a4-5ab7439c732f | Big Oil gets smaller as Chevron and Exxon losses mount to $9.4bn | ...destruction in the second quarter was unprecedented in the history of modern oil markets,” Neil Chapman, Exxon senior vice-president, told analysts on an investor call. “To put it in context, absolute... | Oil & Gas industry | 2020-09-16 14:20:31.865540 | XOM | nan | nan | FT | exxon mobil | FTBig Oil gets smaller as Chevron and Exxon losses mount to $9.4bn/content/64d7e86e-079c-4502-a9a4-5ab7439c732f | ft |
2020-05-27 00:00:00 | /content/c43ead81-5af3-44de-af1e-b108d6491354 | Exxon shareholders vote against splitting chair and CEO roles | ...Exxon, said the appointment of a lead director had helped improve oversight. A separate resolution calling for increased transparency about Exxon’s lobbying activity won 37.5 per cent support, a... | Oil & Gas industry | 2020-09-16 14:20:31.865540 | XOM | nan | nan | FT | exxon mobil | FTExxon shareholders vote against splitting chair and CEO roles/content/c43ead81-5af3-44de-af1e-b108d6491354 | ft |
2020-05-12 00:00:00 | /content/c54ee229-f4e7-43c8-87a5-e383099542fb | Big Exxon shareholder to vote against chief | ...company to disclose its lobbying activities, arguing it was falling behind global peers by failing to act on climate change. Wednesday’s move by LGIM, whose roughly $1bn stake makes it a top-20 Exxon... | Corporate governance | 2020-09-16 14:20:31.865540 | XOM | nan | nan | FT | exxon mobil | FTBig Exxon shareholder to vote against chief/content/c54ee229-f4e7-43c8-87a5-e383099542fb | ft |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from the New York Times for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.nyt(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | description | tag | author | comments | date_retrieved | ticker | newspaper | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-09-08 00:00:00 | /aponline/2020/09/08/business/ap-financial-markets-stocks.html?searchResultPosition=2 | Exxon, Tesla Fall; Nikola, Beyond Meat Rise | Stocks that moved heavily or traded substantially Tuesday: | Business | The Associated Press | nan | 2020-09-16 14:22:13.032245 | XOM | NYT | exxon mobil | NYTExxon, Tesla Fall; Nikola, Beyond Meat Rise/aponline/2020/09/08/business/ap-financial-markets-stocks.html?searchResultPosition=2 | nyt |
2020-09-08 00:00:00 | /reuters/2020/09/08/business/08reuters-exxon-mobil-spending-exclusive.html?searchResultPosition=3 | Exclusive: Exxon Downsizes Global Empire as Wall Street Worries About Dividend | Ill-timed bets on rising demand have Exxon Mobil Corp facing a shortfall of about $48 billion through 2021, according to a Reuters tally and Wall Street estimates, a situation that will require the top U.S. oil company to make deep cuts to its staff and projects. | Business | Reuters | nan | 2020-09-16 14:22:13.032245 | XOM | NYT | exxon mobil | NYTExclusive: Exxon Downsizes Global Empire as Wall Street Worries About Dividend/reuters/2020/09/08/business/08reuters-exxon-mobil-spending-exclusive.html?searchResultPosition=3 | nyt |
2020-09-03 00:00:00 | /reuters/2020/09/03/business/03reuters-refinery-operations-exxon-beaumont.html?searchResultPosition=4 | Exxon Beaumont, Texas, Refinery Restarts Large Crude Unit: Sources | Exxon Mobil Corp restarted the large crude distillation unit (CDU) at its 369,024 barrel-per-day (bpd) Beaumont, Texas, refinery on Thursday, said sources familiar with plant operations. | Business | Reuters | nan | 2020-09-16 14:22:13.032245 | XOM | NYT | exxon mobil | NYTExxon Beaumont, Texas, Refinery Restarts Large Crude Unit: Sources/reuters/2020/09/03/business/03reuters-refinery-operations-exxon-beaumont.html?searchResultPosition=4 | nyt |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from Reuters for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.reuters()
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
df.drop_duplicates('headline', inplace = True) # Reuters returns duplicate articles if articles were updated after publication...
date | link | headline | description | date_retrieved | ticker | comments | author | tag | newspaper | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-09-16 00:00:00 | /article/idUSL4N2GD12G | FACTBOX-Oil refiners shut plants as demand losses may never return | Plc, Exxon Mobil Corp,Viva Energy Group and Ampol Ltd - all welcomed | 2020-09-16 15:37:54.994138 | XOM | nan | nan | nan | Reuters | exxon mobil | ReutersFACTBOX-Oil refiners shut plants as demand losses may never return/article/idUSL4N2GD12G | reuters |
2020-09-15 00:00:00 | /article/idUSKBN26707N | U.S. presidential candidate Biden rips Trump's record on ethanol | Exxon Mobil Corp and billionaire investor Carl Icahn.Biden's team has | 2020-09-16 15:37:54.994138 | XOM | nan | nan | nan | Reuters | exxon mobil | ReutersU.S. presidential candidate Biden rips Trump's record on ethanol/article/idUSKBN26707N | reuters |
2020-09-15 00:00:00 | /article/idUSKBN2660I3 | Column: Australia still addicted to fossil fuel with oil, gas subsidies - Russell | for subsidising the four oil refineries, owned by BP Plc, Exxon Mobil | 2020-09-16 15:37:54.994138 | XOM | nan | nan | nan | Reuters | exxon mobil | ReutersColumn: Australia still addicted to fossil fuel with oil, gas subsidies - Russell/article/idUSKBN2660I3 | reuters |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from Seeking Alpha for the specified keywords.
- It can happen that access to SeekingAlpha requires to solve a captcha by pressing and holding a button when run for the first time in a program. Will try to fix this in future versions.
press_releases = True
will get press releases instead of news headlines.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.seeking_alpha(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | author | comments | date_retrieved | ticker | description | tag | newspaper | search_term | id | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-09-15 00:00:00 | /news/3614409-options-traders-pricing-in-exxon-dividend-cut-analyst-says?source=content_type:react|section:News|sectionAsset:News|first_level_url:symbol|button:Author|lock_status:No|line:1 | Options traders pricing in Exxon dividend cut, analyst says | SA News | 0 comments | 2020-09-16 15:14:23.575898 | XOM | nan | nan | SA - News | exxon mobil | SA - NewsOptions traders pricing in Exxon dividend cut, analyst says/news/3614409-options-traders-pricing-in-exxon-dividend-cut-analyst-says?source=content_type:react|section:News|sectionAsset:News|first_level_url:symbol|button:Author|lock_status:No|line:1 | sa |
2020-09-14 00:00:00 | /news/3613801-connecticut-latest-state-to-sue-exxon-over-climate-change?source=content_type:react|section:News|sectionAsset:News|first_level_url:symbol|button:Author|lock_status:No|line:2 | Connecticut latest state to sue Exxon over climate change | SA News | 0 comments | 2020-09-16 15:14:23.575898 | XOM | nan | nan | SA - News | exxon mobil | SA - NewsConnecticut latest state to sue Exxon over climate change/news/3613801-connecticut-latest-state-to-sue-exxon-over-climate-change?source=content_type:react|section:News|sectionAsset:News|first_level_url:symbol|button:Author|lock_status:No|line:2 | sa |
2020-09-10 00:00:00 | /news/3612953-exxon-rated-new-buy-mkm-shares-slip?source=content_type:react|section:News|sectionAsset:News|first_level_url:symbol|button:Author|lock_status:No|line:3 | Exxon rated new Buy at MKM but shares slip | SA News | 0 comments | 2020-09-16 15:14:23.575898 | XOM | nan | nan | SA - News | exxon mobil | SA - NewsExxon rated new Buy at MKM but shares slip/news/3612953-exxon-rated-new-buy-mkm-shares-slip?source=content_type:react | section:News |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns the news headlines from the Wall Street Journal for the specified keywords.
Example
# retrieve news article for a given search term
news = NewsData('XOM', 'exxon mobil')
df = news.wsj(datestop = '2020-06-01')
# filter news headlines with a keyword list
news.filterz = [ 'exxon', 'mobil', 'oil', 'energy' ]
df = news.filter_data(df)
date | link | headline | description | author | tag | date_retrieved | ticker | newspaper | search_term | id | comments | source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-09-13 00:00:00 | /articles/exxon-used-to-be-americas-most-valuable-company-what-happened-oil-gas-11600037243?mod=searchresults&page=1&pos=1 | Exxon Used to Be America’s Most Valuable Company. What Happened? | The oil giant doubled down on oil and gas at what now looks to be the worst possible time. Investors are fleeing and workers are grumbling about the direction of a company some see as out of touch. | Christopher M. Matthews | Business | 2020-09-16 15:19:39.733511 | XOM | WSJ | exxon mobil | WSJExxon Used to Be America’s Most Valuable Company. What Happened?/articles/exxon-used-to-be-americas-most-valuable-company-what-happened-oil-gas-11600037243?mod=searchresults&page=1&pos=1 | nan | wsj |
2020-09-10 00:00:00 | /articles/oil-major-bp-gives-a-taste-of-how-it-will-go-green-11599745648?mod=searchresults&page=1&pos=2 | Oil Major BP Gives a Taste of How It Will Go Green | A deal to buy into wind farms off the coast of New York and Massachusetts showcases the British company’s ambitions in the clean-energy sector—and the risks it is taking. | Rochelle Toplensky | Heard on the Street | 2020-09-16 15:19:39.733511 | XOM | WSJ | exxon mobil | WSJOil Major BP Gives a Taste of How It Will Go Green/articles/oil-major-bp-gives-a-taste-of-how-it-will-go-green-11599745648?mod=searchresults&page=1&pos=2 | nan | wsj |
2020-09-08 00:00:00 | /articles/oil-prices-drop-on-faltering-recovery-in-demand-11599562101?mod=searchresults&page=1&pos=3 | Oil Prices Tumble on Faltering Recovery in Demand | Oil prices slumped to their lowest level in nearly three months, under pressure from a stalling recovery in demand and planned production expansions by OPEC that threaten to add to an existing glut of crude. | Joe Wallace | Oil Markets | 2020-09-16 15:19:39.733511 | XOM | WSJ | exxon mobil | WSJOil Prices Tumble on Faltering Recovery in Demand/articles/oil-prices-drop-on-faltering-recovery-in-demand-11599562101?mod=searchresults&page=1&pos=3 | nan | wsj |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Returns dataframe of tickers traded on the Nasdaq exchange.
Example
nasdaq_tickers()
Symbol | Security Name | |
---|---|---|
0 | AACG | ATA Creativity Global - American Depositary Shares, each representing two common shares |
1 | AACQ | Artius Acquisition Inc. - Class A Common Stock |
2 | AACQU | Artius Acquisition Inc. - Unit consisting of one ordinary share and one third redeemable warrant |
3 | AACQW | Artius Acquisition Inc. - Warrant |
4 | AAL | American Airlines Group, Inc. - Common Stock |
... | ... | ... |
- Returns 100.000+ global tickers from Gurufocus.com. Note that companies are listed in different countries or exchanges with different ticker symbols.
Example
global_tickers()
Symbol | Company | |
---|---|---|
0 | QNCO.Israel | (Y.Z) Queenco Ltd |
1 | ONE.Canada | 01 Communique Laboratory Inc |
2 | DFK.Germany | 01 Communique Laboratory Inc |
3 | OCQLF | 01 Communique Laboratory Inc |
4 | 01C.Poland | 01Cyberaton SA |
5 | 1PG.Australia | 1 Page Ltd |
6 | I8Y.Germany | 1 Page Ltd |
8 | 8458.Taiwan | 1 Production Film Co |
9 | DRI.Austria | 1&1 Drillisch AG |
10 | DRI.Switzerland | 1&1 Drillisch AG |
... | ... | ... |
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright (c) 2020 Peter la Cour