-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
314 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from .resnet_cifar import * | ||
from .resnet import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, in_planes, planes, stride=1): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||
self.bn1 = BN(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn2 = BN(planes) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride != 1 or in_planes != self.expansion * planes: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), | ||
BN(self.expansion * planes) | ||
) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.bn2(self.conv2(out)) | ||
out += self.shortcut(x) | ||
out = F.relu(out) | ||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, in_planes, planes, stride=1): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) | ||
self.bn1 = BN(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||
self.bn2 = BN(planes) | ||
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) | ||
self.bn3 = BN(self.expansion * planes) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride != 1 or in_planes != self.expansion * planes: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), | ||
BN(self.expansion * planes) | ||
) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = F.relu(self.bn2(self.conv2(out))) | ||
out = self.bn3(self.conv3(out)) | ||
out += self.shortcut(x) | ||
out = F.relu(out) | ||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
def __init__(self, block, num_blocks, num_classes=10, use_norm=False, return_features=False): | ||
super(ResNet, self).__init__() | ||
|
||
global BN | ||
BN = nn.BatchNorm2d | ||
|
||
self.in_planes = 64 | ||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | ||
self.layer_one = self.conv1 | ||
self.bn1 = BN(64) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | ||
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | ||
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | ||
self.linear = nn.Linear(512 * block.expansion, num_classes) | ||
self.return_encoding = return_features | ||
|
||
def _make_layer(self, block, planes, num_blocks, stride): | ||
strides = [stride] + [1] * (num_blocks - 1) | ||
layers = [] | ||
for stride in strides: | ||
layers.append(block(self.in_planes, planes, stride)) | ||
self.in_planes = planes * block.expansion | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
self.layer_one_out = self.conv1(x) | ||
self.layer_one_out.requires_grad_() | ||
self.layer_one_out.retain_grad() | ||
out = F.relu(self.bn1(self.layer_one_out)) | ||
out = self.maxpool(out) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = self.layer4(out) | ||
out = F.avg_pool2d(out, 7) | ||
encoding = out.view(out.size(0), -1) | ||
out = self.linear(encoding) | ||
if self.return_encoding: | ||
return out, encoding | ||
else: | ||
return out | ||
|
||
|
||
class ResNetCIFAR(nn.Module): | ||
def __init__(self, block, num_blocks, num_classes=10): | ||
super(ResNetCIFAR, self).__init__() | ||
|
||
global BN | ||
BN = nn.BatchNorm2d | ||
|
||
self.in_planes = 16 | ||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn1 = BN(16) | ||
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) | ||
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) | ||
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) | ||
self.linear = nn.Linear(64 * block.expansion, num_classes) | ||
|
||
def _make_layer(self, block, planes, num_blocks, stride): | ||
strides = [stride] + [1] * (num_blocks - 1) | ||
layers = [] | ||
for stride in strides: | ||
layers.append(block(self.in_planes, planes, stride)) | ||
self.in_planes = planes * block.expansion | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = F.avg_pool2d(out, 8) | ||
out = out.view(out.size(0), -1) | ||
out = self.linear(out) | ||
return out | ||
|
||
|
||
def resnet18(): | ||
return ResNet(BasicBlock, [2, 2, 2, 2]) | ||
|
||
|
||
def resnet34(): | ||
return ResNet(BasicBlock, [3, 4, 6, 3]) | ||
|
||
|
||
def resnet50(**kwargs): | ||
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | ||
|
||
|
||
def resnet101(): | ||
return ResNet(Bottleneck, [3, 4, 23, 3]) | ||
|
||
|
||
def resnet152(): | ||
return ResNet(Bottleneck, [3, 8, 36, 3]) | ||
|
||
|
||
if __name__ == '__main__': | ||
net = resnet50() | ||
y = net(torch.randn(1, 3, 32, 32)) | ||
print(y.size()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.nn.init as init | ||
from torch.nn import Parameter | ||
|
||
__all__ = ['ResNet_s', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202'] | ||
|
||
|
||
def _weights_init(m): | ||
classname = m.__class__.__name__ | ||
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight) | ||
|
||
|
||
class NormedLinear(nn.Module): | ||
|
||
def __init__(self, in_features, out_features): | ||
super(NormedLinear, self).__init__() | ||
self.weight = Parameter(torch.Tensor(in_features, out_features)) | ||
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) | ||
|
||
def forward(self, x): | ||
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) | ||
return out | ||
|
||
|
||
class LambdaLayer(nn.Module): | ||
|
||
def __init__(self, lambd): | ||
super(LambdaLayer, self).__init__() | ||
self.lambd = lambd | ||
|
||
def forward(self, x): | ||
return self.lambd(x) | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, in_planes, planes, stride=1, option='A'): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride != 1 or in_planes != planes: | ||
if option == 'A': | ||
""" | ||
For CIFAR10 ResNet paper uses option A. | ||
""" | ||
self.shortcut = LambdaLayer(lambda x: | ||
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0)) | ||
elif option == 'B': | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(self.expansion * planes) | ||
) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.bn2(self.conv2(out)) | ||
out += self.shortcut(x) | ||
out = F.relu(out) | ||
return out | ||
|
||
|
||
class ResNet_s(nn.Module): | ||
|
||
def __init__(self, block, num_blocks, num_classes=10, use_norm=False, return_features=False): | ||
super(ResNet_s, self).__init__() | ||
self.in_planes = 16 | ||
|
||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) | ||
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) | ||
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) | ||
if use_norm: | ||
self.fc = NormedLinear(64, num_classes) | ||
else: | ||
self.fc = nn.Linear(64, num_classes) | ||
self.apply(_weights_init) | ||
self.return_encoding = return_features | ||
|
||
def _make_layer(self, block, planes, num_blocks, stride): | ||
strides = [stride] + [1]*(num_blocks-1) | ||
layers = [] | ||
for stride in strides: | ||
layers.append(block(self.in_planes, planes, stride)) | ||
self.in_planes = planes * block.expansion | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = F.avg_pool2d(out, out.size()[3]) | ||
encoding = out.view(out.size(0), -1) | ||
out = self.fc(encoding) | ||
if self.return_encoding: | ||
return out, encoding | ||
else: | ||
return out | ||
|
||
|
||
def resnet20(): | ||
return ResNet_s(BasicBlock, [3, 3, 3]) | ||
|
||
|
||
def resnet32(num_classes=10, use_norm=False, return_features=False): | ||
return ResNet_s(BasicBlock, [5, 5, 5], num_classes=num_classes, use_norm=use_norm, return_features=return_features) | ||
|
||
|
||
def resnet44(): | ||
return ResNet_s(BasicBlock, [7, 7, 7]) | ||
|
||
|
||
def resnet56(): | ||
return ResNet_s(BasicBlock, [9, 9, 9]) | ||
|
||
|
||
def resnet110(): | ||
return ResNet_s(BasicBlock, [18, 18, 18]) | ||
|
||
|
||
def resnet1202(): | ||
return ResNet_s(BasicBlock, [200, 200, 200]) | ||
|
||
|
||
def test(net): | ||
import numpy as np | ||
total_params = 0 | ||
|
||
for x in filter(lambda p: p.requires_grad, net.parameters()): | ||
total_params += np.prod(x.data.numpy().shape) | ||
print("Total number of params", total_params) | ||
print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters())))) | ||
|
||
|
||
if __name__ == "__main__": | ||
for net_name in __all__: | ||
if net_name.startswith('resnet'): | ||
print(net_name) | ||
test(globals()[net_name]()) | ||
print() |