Skip to content

Commit

Permalink
add base models
Browse files Browse the repository at this point in the history
  • Loading branch information
YyzHarry committed Sep 21, 2020
1 parent 2e62842 commit a05d64c
Show file tree
Hide file tree
Showing 3 changed files with 314 additions and 0 deletions.
2 changes: 2 additions & 0 deletions models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from .resnet_cifar import *
from .resnet import *
162 changes: 162 additions & 0 deletions models/resnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = BN(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = BN(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
BN(self.expansion * planes)
)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out


class Bottleneck(nn.Module):
expansion = 4

def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = BN(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = BN(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = BN(self.expansion * planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
BN(self.expansion * planes)
)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out


class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, use_norm=False, return_features=False):
super(ResNet, self).__init__()

global BN
BN = nn.BatchNorm2d

self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.layer_one = self.conv1
self.bn1 = BN(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
self.return_encoding = return_features

def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)

def forward(self, x):
self.layer_one_out = self.conv1(x)
self.layer_one_out.requires_grad_()
self.layer_one_out.retain_grad()
out = F.relu(self.bn1(self.layer_one_out))
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 7)
encoding = out.view(out.size(0), -1)
out = self.linear(encoding)
if self.return_encoding:
return out, encoding
else:
return out


class ResNetCIFAR(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNetCIFAR, self).__init__()

global BN
BN = nn.BatchNorm2d

self.in_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = BN(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64 * block.expansion, num_classes)

def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out


def resnet18():
return ResNet(BasicBlock, [2, 2, 2, 2])


def resnet34():
return ResNet(BasicBlock, [3, 4, 6, 3])


def resnet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)


def resnet101():
return ResNet(Bottleneck, [3, 4, 23, 3])


def resnet152():
return ResNet(Bottleneck, [3, 8, 36, 3])


if __name__ == '__main__':
net = resnet50()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
150 changes: 150 additions & 0 deletions models/resnet_cifar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn import Parameter

__all__ = ['ResNet_s', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']


def _weights_init(m):
classname = m.__class__.__name__
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight)


class NormedLinear(nn.Module):

def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)

def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out


class LambdaLayer(nn.Module):

def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd

def forward(self, x):
return self.lambd(x)


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_planes, planes, stride=1, option='A'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
"""
For CIFAR10 ResNet paper uses option A.
"""
self.shortcut = LambdaLayer(lambda x:
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
elif option == 'B':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out


class ResNet_s(nn.Module):

def __init__(self, block, num_blocks, num_classes=10, use_norm=False, return_features=False):
super(ResNet_s, self).__init__()
self.in_planes = 16

self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
if use_norm:
self.fc = NormedLinear(64, num_classes)
else:
self.fc = nn.Linear(64, num_classes)
self.apply(_weights_init)
self.return_encoding = return_features

def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion

return nn.Sequential(*layers)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, out.size()[3])
encoding = out.view(out.size(0), -1)
out = self.fc(encoding)
if self.return_encoding:
return out, encoding
else:
return out


def resnet20():
return ResNet_s(BasicBlock, [3, 3, 3])


def resnet32(num_classes=10, use_norm=False, return_features=False):
return ResNet_s(BasicBlock, [5, 5, 5], num_classes=num_classes, use_norm=use_norm, return_features=return_features)


def resnet44():
return ResNet_s(BasicBlock, [7, 7, 7])


def resnet56():
return ResNet_s(BasicBlock, [9, 9, 9])


def resnet110():
return ResNet_s(BasicBlock, [18, 18, 18])


def resnet1202():
return ResNet_s(BasicBlock, [200, 200, 200])


def test(net):
import numpy as np
total_params = 0

for x in filter(lambda p: p.requires_grad, net.parameters()):
total_params += np.prod(x.data.numpy().shape)
print("Total number of params", total_params)
print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters()))))


if __name__ == "__main__":
for net_name in __all__:
if net_name.startswith('resnet'):
print(net_name)
test(globals()[net_name]())
print()

0 comments on commit a05d64c

Please sign in to comment.