このパッケージはSCIS2025で吉住(九州大学)が発表したアルゴリズムのSageMathによる実装です. アルゴリズムの詳しい内容は(参加者のみが見れる)予稿を参照します.
This package contains the implementation of the algorithm in SageMath presented at SCIS2025 by Ryo Yoshizumi. The detailed contents of the algorithm can be found in the proceedings, which are accessible only to participants.
In this package, there is functions to compute func_isogeny.py
. For the overall flow, please refer to test.py
.
This code is written in SageMath.
By writing the following command, you can compute one example of
% sage example.py
Here, the base field is
The kernel
Evaluating point is
The output is as follows:
p: 276154505650672190920223
ell: 11
E_0:
Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 276154505650672190920223^2
e1=(e1^(1),e1^(2)):
((210831735326664260671440*z2 + 87198234199232688535215 : 133255005542521365746194*z2 + 164977575746837862238202 : 1), (83375910444643963132697*z2 + 200948769993679858502156 : 144292860645864077727680*z2 + 148419487573216577660120 : 1))
e2=(e2^(1),e2^(2)):
((98830049968673606594523 : 242317345512027435674284*z2 + 49548615497841843339319 : 1), (177324455681998584325700 : 216601895301696610344217 : 1))
x=(x^(1),0):
((106189123109636747922251*z2 + 248968408709573238167579 : 151118498536791259433057*z2 + 87307954336256715411728 : 1), (0 : 1 : 0))
theta-null point of the codomain:
[112027156618648925977355*z2 + 147438371256409604632158, 69068842046189523671338*z2 + 222257352160280440335182, 275376810320619078414513*z2 + 183273802569472479972437, 86875977424383747210632*z2 + 210469468339113327744966, 1]
theta coordinate of the image f(x):
[51118548117130760667387*z2 + 22524482140569545457684, 179878823554441321130688*z2 + 205994074250712649272564, 198607624210760764176903*z2 + 126880054694919192506851, 103634261912850587289929*z2 + 224536590004812764733705, 1]
- Name: Ryo Yoshizumi
- Affiliation: Kyushu University
- Email: [email protected]