Skip to content

Commit

Permalink
Add description about flags
Browse files Browse the repository at this point in the history
  • Loading branch information
YoshitakaMo committed Mar 8, 2023
1 parent 88d174f commit ec1ec7a
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 9 deletions.
35 changes: 26 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,27 +39,28 @@ Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
</pre>DO NOT use `nvidia-smi` to check the version.<br>See [NVIDIA CUDA Installation Guide for Linux](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html) if you haven't installed it.
1. Make sure your GNU compiler version is **4.9 or later** because `GLIBCXX_3.4.20` is required:<pre>$ gcc --version
3. Make sure your GNU compiler version is **4.9 or later** because `GLIBCXX_3.4.20` is required:<pre>$ gcc --version
gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
</pre>If the version is 4.8.5 or older (e.g. CentOS 7), install a new one and add `PATH` to it.
1. Download `install_colabbatch_linux.sh` from this repository:<pre>$ wget https://raw.githubusercontent.com/YoshitakaMo/localcolabfold/main/install_colabbatch_linux.sh</pre> and run it in the directory where you want to install:<pre>$ bash install_colabbatch_linux.sh</pre>About 5 minutes later, `colabfold_batch` directory will be created. Do not move this directory after the installation.
4. Download `install_colabbatch_linux.sh` from this repository:<pre>$ wget https://raw.githubusercontent.com/YoshitakaMo/localcolabfold/main/install_colabbatch_linux.sh</pre> and run it in the directory where you want to install:<pre>$ bash install_colabbatch_linux.sh</pre>About 5 minutes later, `colabfold_batch` directory will be created. Do not move this directory after the installation.

Keep the network unblocked. And **check the log** output to see if there are any errors.

If you find errors in the output log, the easiest way is to check the network and delete the colabfold_batch directory, then re-run the installation script.

2. Add environment variable PATH:<pre># For bash or zsh<br># e.g. export PATH="/home/moriwaki/Desktop/colabfold_batch/colabfold-conda/bin:\$PATH"<br>export PATH="<COLABFOLDBATCH_DIR>/bin:\$PATH"</pre>
It is recommended to add this export command to \~/.bashrc and restart bash (\~/.bashrc will be executed every time bash is started)
5. Add environment variable PATH:<pre># For bash or zsh<br># e.g. export PATH="/home/moriwaki/Desktop/colabfold_batch/colabfold-conda/bin:\$PATH"<br>export PATH="<COLABFOLDBATCH_DIR>/bin:\$PATH"</pre>
It is recommended to add this export command to `~/.bashrc` and restart bash (`~/.bashrc` will be executed every time bash is started)

3. To run the prediction, type <pre>colabfold_batch --amber --templates --num-recycle 3 --use-gpu-relax inputfile outputdir/ </pre>The result files will be created in the `outputdir`.
Just use cpu to run the prediction, type <pre>colabfold_batch --amber --templates --num-recycle 3 --use-gpu-relax inputfile outputdir/ --cpu</pre>
To run the AlphaFold2-multimer with the versioned AF2-multimer weights, add `--model-type alphafold2_multimer_v3` in the arguments. e.g. <pre>colabfold_batch --amber --templates --num-recycle 3 --use-gpu-relax --model-type alphafold2_multimer_v3 inputfile outputdir/</pre>`alphafold2_multimer_v1, alphafold2_multimer_v2` are also available. Default is `auto` (use `alphafold2_ptm` for monomers and
`alphafold2_multimer_v3` for complexes.)
6. To run the prediction, type <pre>colabfold_batch input outputdir/</pre>The result files will be created in the `outputdir`. This command will execute the prediction without templates and relaxation (energy minimization). If you want to use templates and relaxation, add `--templates` and `--amber` flags, respectively. For example,

For more details, see `colabfold_batch --help`.
<pre>colabfold_batch --templates --amber input outputdir/</pre>

To run the AlphaFold2-multimer with the versioned AF2-multimer weights, add `--model-type alphafold2_multimer_v3` in the arguments. e.g. <pre>colabfold_batch --templates --amber --model-type alphafold2_multimer_v3 input outputdir/</pre>`alphafold2_multimer_v1, alphafold2_multimer_v2` are also available. Default is `auto` (use `alphafold2_ptm` for monomers and `alphafold2_multimer_v3` for complexes.)

For more details, see [Flags](#flags) and `colabfold_batch --help`.

#### For WSL2 (in windows)

Expand Down Expand Up @@ -173,6 +174,22 @@ id,sequence

You can input your a3m format MSA file. For multimer predictions, the a3m file should be compatible with colabfold format.

### Flags

These flags are useful for the predictions.

- **`--amber`** : Use amber for structure refinement (relaxation / energy minimization). To control number of top ranked structures are relaxed set `--num-relax`.
- **`--templates`** : Use templates from pdb.
- **`--use-gpu-relax`** : Run amber on NVidia GPU instead of CPU. This feature is only available on a machine with Nvidia GPUs.
- **`--num-recycle <int>`** : Number of prediction recycles. Increasing recycles can improve the quality but slows down the prediction. Default is `3`. (e.g. `--num-recycle 10`)
- `--custom-template-path <directory>` : Restrict template files used for `--template` to only those contained in the specified directory. This flag enables us to use non-public pdb files for the prediction. See also https://github.com/sokrypton/ColabFold/issues/177 .
- `--random-seed <int>` **Changing the seed for the random number generator can result in different structure predictions.** (e.g. `--random-seed 42`)
- `--num-seeds <int>` Number of seeds to try. Will iterate from range(random_seed, random_seed+num_seeds). (e.g. `--num-seed 5`)
- `--max-msa` : Defines: `max-seq:max-extra-seq` number of sequences to use (e.g. `--max-msa 512:1024`). `--max-seq` and `--max-extra-seq` arguments are also available if you want to specify separately. This is a reimplementation of the paper of [Sampling alternative conformational states of transporters and receptors with AlphaFold2](https://elifesciences.org/articles/75751) demonstrated by del Alamo *et al*.
- `--use-dropout` : activate dropouts during inference to sample from uncertainity of the models.
- `--overwrite-existing-results` : Overwrite the result files.
- For more information, `colabfold_batch --help`.

## How to update

Since [ColabFold](https://github.com/sokrypton/ColabFold) is still a work in progress, your localcolabfold should be also updated frequently to use the latest features. An easy-to-use update script is provided for this purpose.
Expand Down
1 change: 1 addition & 0 deletions README_ja.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

## アップデート情報

- 2023年2月5日, version 1.5.0-preリリース。
- 2022年6月18日, version 1.4.0 リリース。[Release v1.4.0](https://github.com/YoshitakaMo/localcolabfold/releases/tag/v1.4.0)
- 2021年12月9日, β版。簡単に使えるアップデートスクリプトを追加。[アップデートのやり方](#アップデートのやり方)を参照。
- 2021年12月4日, LocalColabFoldは最新版の[pipでインストール可能なColabFold](https://github.com/sokrypton/ColabFold#running-locally)に対応しました。このリポジトリではrelax(構造最適化)処理を行うために必要な他のパラメータファイルとともにColabFoldをインストールするためのスクリプトを提供しています。AlphaFoldとAlphaFold-Multimerの重みパラメータは初回の実行時に自動的にダウンロードされます。
Expand Down

0 comments on commit ec1ec7a

Please sign in to comment.