Skip to content

Testing and Understanding Deviation Behaviors in FHE-hardened Machine Learning Models

Notifications You must be signed in to change notification settings

Yiteng-Peng/HEDiff

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ffeed7f · Dec 4, 2024

History

10 Commits
Jun 7, 2024
Jun 7, 2024
Jul 28, 2024
Jun 7, 2024
Jun 7, 2024
Dec 4, 2024
Jun 7, 2024
Jul 28, 2024
Jun 7, 2024
Jun 7, 2024
Jul 29, 2024
Jul 28, 2024
Jun 7, 2024
Jul 28, 2024
Jun 7, 2024
Jul 28, 2024
Jul 28, 2024
Jul 28, 2024
Jul 28, 2024
Jun 7, 2024
Jun 7, 2024
Jun 7, 2024
Jul 29, 2024
Jun 7, 2024
Jun 8, 2024
Jul 29, 2024
Jul 28, 2024
Jun 7, 2024
Jun 7, 2024
Jun 7, 2024
Jun 7, 2024

Repository files navigation

HEDiff

Paper

Testing and Understanding Deviation Behaviors in FHE-hardened Machine Learning Models

Run

  1. Train models with plain_models.py and plain_models_tf.py. If you want to use HElayers, you need to convert torch model into onnx with fhe_onnx_convert first.
  2. Run diff_{name}.py for Margin-guided Differential Testing. name: 'tenseal' for TenSEAL, 'zama' for Concrete-ML, 'helayer' for HElayers.
  3. If needed, run other files for the statistic information about deviation inputs in FHE-ML models.

Datasets List

MNIST: http://yann.lecun.com/exdb/mnist/

DIGITS: https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html

Credit: https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

Bank: https://archive.ics.uci.edu/dataset/222/bank+marketing

Code for data processing is in ./dataset

Stealthiness Examples

TenSEAL


Concrete


HElayers

Tips

  1. Dependency information
concrete-ml               1.4.0
imbalanced-learn          0.12.3
scikit-learn              1.1.3
tenseal                   0.3.14
tensorflow-cpu            2.10.0
torchattacks              3.5.1
pandas                    2.1.1
pyhelayers                1.5.3.1
pytorch                   1.13.1
numpy                     1.23.5

About

Testing and Understanding Deviation Behaviors in FHE-hardened Machine Learning Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published