Skip to content

WangQvQ/YOLO-Arxiv-Daily

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

每日从arXiv中获取最新YOLO相关论文

Drone Stereo Vision for Radiata Pine Branch Detection and Distance Measurement: Integrating SGBM and Segmentation Models

发布日期:2024-09-26

作者:Yida Lin

摘要:Manual pruning of radiata pine trees presents significant safety risks due to their substantial height and the challenging terrains in which they thrive. To address these risks, this research proposes the development of a drone-based pruning system equipped with specialized pruning tools and a stereo vision camera, enabling precise detection and trimming of branches. Deep learning algorithms, including YOLO and Mask R-CNN, are employed to ensure accurate branch detection, while the Semi-Global Matching algorithm is integrated to provide reliable distance estimation. The synergy between these techniques facilitates the precise identification of branch locations and enables efficient, targeted pruning. Experimental results demonstrate that the combined implementation of YOLO and SGBM enables the drone to accurately detect branches and measure their distances from the drone. This research not only improves the safety and efficiency of pruning operations but also makes a significant contribution to the advancement of drone technology in the automation of agricultural and forestry practices, laying a foundational framework for further innovations in environmental management.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Classification of Gleason Grading in Prostate Cancer Histopathology Images Using Deep Learning Techniques: YOLO, Vision Transformers, and Vision Mamba

发布日期:2024-09-25

作者:Amin Malekmohammadi

摘要:Prostate cancer ranks among the leading health issues impacting men, with the Gleason scoring system serving as the primary method for diagnosis and prognosis. This system relies on expert pathologists to evaluate samples of prostate tissue and assign a Gleason grade, a task that requires significant time and manual effort. To address this challenge, artificial intelligence (AI) solutions have been explored to automate the grading process. In light of these challenges, this study evaluates and compares the effectiveness of three deep learning methodologies, YOLO, Vision Transformers, and Vision Mamba, in accurately classifying Gleason grades from histopathology images. The goal is to enhance diagnostic precision and efficiency in prostate cancer management. This study utilized two publicly available datasets, Gleason2019 and SICAPv2, to train and test the performance of YOLO, Vision Transformers, and Vision Mamba models. Each model was assessed based on its ability to classify Gleason grades accurately, considering metrics such as false positive rate, false negative rate, precision, and recall. The study also examined the computational efficiency and applicability of each method in a clinical setting. Vision Mamba demonstrated superior performance across all metrics, achieving high precision and recall rates while minimizing false positives and negatives. YOLO showed promise in terms of speed and efficiency, particularly beneficial for real-time analysis. Vision Transformers excelled in capturing long-range dependencies within images, although they presented higher computational complexity compared to the other models. Vision Mamba emerges as the most effective model for Gleason grade classification in histopathology images, offering a balance between accuracy and computational efficiency.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer

发布日期:2024-09-25

作者:Benji Peng

摘要:This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Source-Free Domain Adaptation for YOLO Object Detection

发布日期:2024-09-25

作者:Simon Varailhon

摘要:Source-free domain adaptation (SFDA) is a challenging problem in object detection, where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. Most state-of-the-art SFDA methods for object detection have been proposed for Faster-RCNN, a detector that is known to have high computational complexity. This paper focuses on domain adaptation techniques for real-world vision systems, particularly for the YOLO family of single-shot detectors known for their fast baselines and practical applications. Our proposed SFDA method - Source-Free YOLO (SF-YOLO) - relies on a teacher-student framework in which the student receives images with a learned, target domain-specific augmentation, allowing the model to be trained with only unlabeled target data and without requiring feature alignment. A challenge with self-training using a mean-teacher architecture in the absence of labels is the rapid decline of accuracy due to noisy or drifting pseudo-labels. To address this issue, a teacher-to-student communication mechanism is introduced to help stabilize the training and reduce the reliance on annotated target data for model selection. Despite its simplicity, our approach is competitive with state-of-the-art detectors on several challenging benchmark datasets, even sometimes outperforming methods that use source data for adaptation.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO

发布日期:2024-09-24

作者:Ali Badiezadeh

摘要:Accurate segmentation of prostate cancer histopathology images is crucial for diagnosis and treatment planning. This study presents a comparative analysis of three deep learning-based methods, Mamba, SAM, and YOLO, for segmenting prostate cancer histopathology images. We evaluated the performance of these models on two comprehensive datasets, Gleason 2019 and SICAPv2, using Dice score, precision, and recall metrics. Our results show that the High-order Vision Mamba UNet (H-vmunet) model outperforms the other two models, achieving the highest scores across all metrics on both datasets. The H-vmunet model's advanced architecture, which integrates high-order visual state spaces and 2D-selective-scan operations, enables efficient and sensitive lesion detection across different scales. Our study demonstrates the potential of the H-vmunet model for clinical applications and highlights the importance of robust validation and comparison of deep learning-based methods for medical image analysis. The findings of this study contribute to the development of accurate and reliable computer-aided diagnosis systems for prostate cancer. The code is available at http://github.com/alibdz/prostate\-segmentation.

代码链接http://github.com/alibdz/prostate-segmentation.

论文链接阅读更多


A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone

发布日期:2024-09-24

作者:Abu Shad Ahammed

摘要:To build a smarter and safer city, a secure, efficient, and sustainable transportation system is a key requirement. The autonomous driving system (ADS) plays an important role in the development of smart transportation and is considered one of the major challenges facing the automotive sector in recent decades. A car equipped with an autonomous driving system (ADS) comes with various cutting-edge functionalities such as adaptive cruise control, collision alerts, automated parking, and more. A primary area of research within ADAS involves identifying road obstacles in construction zones regardless of the driving environment. This paper presents an innovative and highly accurate road obstacle detection model utilizing computer vision technology that can be activated in construction zones and functions under diverse drift conditions, ultimately contributing to build a safer road transportation system. The model developed with the YOLO framework achieved a mean average precision exceeding 94\% and demonstrated an inference time of 1.6 milliseconds on the validation dataset, underscoring the robustness of the methodology applied to mitigate hazards and risks for autonomous vehicles.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Real-Time Pedestrian Detection on IoT Edge Devices: A Lightweight Deep Learning Approach

发布日期:2024-09-24

作者:Muhammad Dany Alfikri

摘要:Artificial intelligence (AI) has become integral to our everyday lives. Computer vision has advanced to the point where it can play the safety critical role of detecting pedestrians at road intersections in intelligent transportation systems and alert vehicular traffic as to potential collisions. Centralized computing analyzes camera feeds and generates alerts for nearby vehicles. However, real-time applications face challenges such as latency, limited data transfer speeds, and the risk of life loss. Edge servers offer a potential solution for real-time applications, providing localized computing and storage resources and lower response times. Unfortunately, edge servers have limited processing power. Lightweight deep learning (DL) techniques enable edge servers to utilize compressed deep neural network (DNN) models. The research explores implementing a lightweight DL model on Artificial Intelligence of Things (AIoT) edge devices. An optimized You Only Look Once (YOLO) based DL model is deployed for real-time pedestrian detection, with detection events transmitted to the edge server using the Message Queuing Telemetry Transport (MQTT) protocol. The simulation results demonstrate that the optimized YOLO model can achieve real-time pedestrian detection, with a fast inference speed of 147 milliseconds, a frame rate of 2.3 frames per second, and an accuracy of 78%, representing significant improvements over baseline models.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


PDT: Uav Target Detection Dataset for Pests and Diseases Tree

发布日期:2024-09-24

作者:Mingle Zhou

摘要:UAVs emerge as the optimal carriers for visual weed iden?tification and integrated pest and disease management in crops. How?ever, the absence of specialized datasets impedes the advancement of model development in this domain. To address this, we have developed the Pests and Diseases Tree dataset (PDT dataset). PDT dataset repre?sents the first high-precision UAV-based dataset for targeted detection of tree pests and diseases, which is collected in real-world operational environments and aims to fill the gap in available datasets for this field. Moreover, by aggregating public datasets and network data, we further introduced the Common Weed and Crop dataset (CWC dataset) to ad?dress the challenge of inadequate classification capabilities of test models within datasets for this field. Finally, we propose the YOLO-Dense Pest (YOLO-DP) model for high-precision object detection of weed, pest, and disease crop images. We re-evaluate the state-of-the-art detection models with our proposed PDT dataset and CWC dataset, showing the completeness of the dataset and the effectiveness of the YOLO-DP. The proposed PDT dataset, CWC dataset, and YOLO-DP model are pre?sented at https://github.com/RuiXing123/PDT\_CWC\_YOLO\-DP.

代码链接https://github.com/RuiXing123/PDT_CWC_YOLO-DP.

论文链接阅读更多


Two Deep Learning Solutions for Automatic Blurring of Faces in Videos

发布日期:2024-09-23

作者:Roman Plaud

摘要:The widespread use of cameras in everyday life situations generates a vast amount of data that may contain sensitive information about the people and vehicles moving in front of them (location, license plates, physical characteristics, etc). In particular, people's faces are recorded by surveillance cameras in public spaces. In order to ensure the privacy of individuals, face blurring techniques can be applied to the collected videos. In this paper we present two deep-learning based options to tackle the problem. First, a direct approach, consisting of a classical object detector (based on the YOLO architecture) trained to detect faces, which are subsequently blurred. Second, an indirect approach, in which a Unet-like segmentation network is trained to output a version of the input image in which all the faces have been blurred.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


Real-time Detection and Auto focusing of Beam Profiles from Silicon Photonics Gratings using YOLO model

发布日期:2024-09-22

作者:Yu Dian Lim

摘要:When observing the chip-to-free-space light beams from silicon photonics (SiPh) to free-space, manual adjustment of camera lens is often required to obtain a focused image of the light beams. In this letter, we demonstrated an auto-focusing system based on you-only-look-once (YOLO) model. The trained YOLO model exhibits high classification accuracy of 99.7% and high confidence level

0.95 when detecting light beams from SiPh gratings. A video demonstration of real-time light beam detection, real-time computation of beam width, and auto focusing of light beams are also included.

代码链接:摘要中未找到代码链接。

论文链接阅读更多


About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages