This is a well-structured machine learning framework specifically designed for financial time series analysis and prediction. The project demonstrates solid engineering practices with a comprehensive ...
A machinelearningmodelmaker built with Python. This project provides Provides machinelearningmodelmaker functionality.
β Support for Linear Regression, Random Forest, and Neural Networks β Advanced data preprocessing and feature engineering capabilities β Model interpretability and feature importance analysis β Model performance evaluation and validation
- Python 3.8+
- [Other dependencies]
# Clone the repository
git clone https://github.com/[USERNAME]/machinelearningmodelmaker.git
cd machinelearningmodelmaker
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt- Copy the configuration template:
cp config.example.json config.json
# OR
cp .env.example .env-
Get API keys from the following services:
-
Add your keys to the configuration file.
Never commit real API keys to version control.
The application can be configured through:
- Environment variables (recommended for production)
- Configuration files (for development)
- Command line arguments (for one-off runs)
export API_KEY=your_api_key_here
export DATABASE_URL=sqlite:///data/app.db
export LOG_LEVEL=INFO{
"api_key": "your_api_key_here",
"database_url": "sqlite:///data/app.db",
"log_level": "INFO"
}# Run the main application
python main.py
# Run with specific configuration
python main.py --config config.json
# Show help
python main.py --help# Run with custom settings
python main.py --api-key YOUR_KEY --database-url YOUR_DB_URL
# Run in development mode
python main.py --debug --log-level DEBUGfrom machinelearningmodelmaker import MachinelearningmodelmakerClient
# Initialize the client
client = MachinelearningmodelmakerClient(api_key="your_key")
result = client.[MAIN_METHOD]()
print(result)import machinelearningmodelmaker as pkg
# Configure with custom settings
config = {
"api_key": "your_key",
"timeout": 30,
"retries": 3
}
client = pkg.create_client(config)
data = client.fetch_data()Main client class for interacting with [SERVICE/API].
Parameters:
api_key(str): Your API keytimeout(int): Request timeout in seconds (default: 30)retries(int): Number of retry attempts (default: 3)
Methods:
connect(): Establish connectionfetch_data(query): Fetch data with querydisconnect(): Close connection
Helper function description.
Parameters:
param(str): Parameter description
Returns:
result: Return value description
Run the test suite:
# Run all tests
pytest
# Run with coverage
pytest --cov=src
# Run specific test file
pytest tests/test_specific.py
# Run tests in verbose mode
pytest -vtests/
βββ unit/ # Unit tests
βββ integration/ # Integration tests
βββ fixtures/ # Test data and fixtures
βββ conftest.py # Test configuration
We welcome contributions! Please see our Contributing Guide for details.
# Fork and clone
git clone https://github.com/[USERNAME]/machinelearningmodelmaker.git
cd machinelearningmodelmaker
# Install development dependencies
pip install -r requirements-dev.txt
# Run tests
pytest
# Run linting
flake8 src/
black src/- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Ensure all tests pass
- Update documentation if needed
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
- [Library/Framework 1] for [purpose]
- [Library/Framework 2] for [purpose]
- Community contributors
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: [contact email]
Made with β€οΈ by AI Assistant
machinelearningmodelmaker - Advanced machinelearningmodelmaker solution