Skip to content

Victor-Dixon/machinelearningmodelmaker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

55 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Machinelearningmodelmaker

License: MIT Python Version

This is a well-structured machine learning framework specifically designed for financial time series analysis and prediction. The project demonstrates solid engineering practices with a comprehensive ...

A machinelearningmodelmaker built with Python. This project provides Provides machinelearningmodelmaker functionality.


πŸš€ Features

βœ… Support for Linear Regression, Random Forest, and Neural Networks βœ… Advanced data preprocessing and feature engineering capabilities βœ… Model interpretability and feature importance analysis βœ… Model performance evaluation and validation


πŸ“‹ Table of Contents


πŸ› οΈ Installation

Prerequisites

  • Python 3.8+
  • [Other dependencies]

Setup

# Clone the repository
git clone https://github.com/[USERNAME]/machinelearningmodelmaker.git
cd machinelearningmodelmaker

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

API Keys Setup (if required)

⚠️ Important: This project requires API keys for certain features.

  1. Copy the configuration template:
cp config.example.json config.json
# OR
cp .env.example .env
  1. Get API keys from the following services:

  2. Add your keys to the configuration file.

Never commit real API keys to version control.


βš™οΈ Configuration

The application can be configured through:

  • Environment variables (recommended for production)
  • Configuration files (for development)
  • Command line arguments (for one-off runs)

Environment Variables

export API_KEY=your_api_key_here
export DATABASE_URL=sqlite:///data/app.db
export LOG_LEVEL=INFO

Configuration File

{
  "api_key": "your_api_key_here",
  "database_url": "sqlite:///data/app.db",
  "log_level": "INFO"
}

πŸš€ Usage

Basic Usage

# Run the main application
python main.py

# Run with specific configuration
python main.py --config config.json

# Show help
python main.py --help

Advanced Usage

# Run with custom settings
python main.py --api-key YOUR_KEY --database-url YOUR_DB_URL

# Run in development mode
python main.py --debug --log-level DEBUG

πŸ“– Examples

Example 1: Basic Setup

from machinelearningmodelmaker import MachinelearningmodelmakerClient

# Initialize the client
client = MachinelearningmodelmakerClient(api_key="your_key")
result = client.[MAIN_METHOD]()
print(result)

Example 2: Advanced Configuration

import machinelearningmodelmaker as pkg

# Configure with custom settings
config = {
    "api_key": "your_key",
    "timeout": 30,
    "retries": 3
}

client = pkg.create_client(config)
data = client.fetch_data()

πŸ“š API Reference

Core Classes

MachinelearningmodelmakerClient

Main client class for interacting with [SERVICE/API].

Parameters:

  • api_key (str): Your API key
  • timeout (int): Request timeout in seconds (default: 30)
  • retries (int): Number of retry attempts (default: 3)

Methods:

  • connect(): Establish connection
  • fetch_data(query): Fetch data with query
  • disconnect(): Close connection

Utility Functions

helper_function(param)

Helper function description.

Parameters:

  • param (str): Parameter description

Returns:

  • result: Return value description

πŸ§ͺ Testing

Run the test suite:

# Run all tests
pytest

# Run with coverage
pytest --cov=src

# Run specific test file
pytest tests/test_specific.py

# Run tests in verbose mode
pytest -v

Test Structure

tests/
β”œβ”€β”€ unit/              # Unit tests
β”œβ”€β”€ integration/       # Integration tests
β”œβ”€β”€ fixtures/          # Test data and fixtures
└── conftest.py        # Test configuration

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Fork and clone
git clone https://github.com/[USERNAME]/machinelearningmodelmaker.git
cd machinelearningmodelmaker

# Install development dependencies
pip install -r requirements-dev.txt

# Run tests
pytest

# Run linting
flake8 src/
black src/

Pull Request Process

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass
  6. Update documentation if needed
  7. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments

  • [Library/Framework 1] for [purpose]
  • [Library/Framework 2] for [purpose]
  • Community contributors

πŸ“ž Support


Made with ❀️ by AI Assistant

machinelearningmodelmaker - Advanced machinelearningmodelmaker solution

About

ML model creation and automation platform

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages