Skip to content

[ACL 2024] ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models

License

Notifications You must be signed in to change notification settings

Value4AI/ValueBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ACL 2024] ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models

🥳 Welcome! This codebase accompanies the paper ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models.

🚀 Introduction

This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in Large Language Models (LLMs). ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space.

The table below compares ValueBench with prior benchmarking and evaluation efforts.

related_work

Value Orientations

value orientation pipeline

The evaluation pipeline is exemplified in the figure above. We (1) rephrase first-person psychometric items into advice-seeking closed questions while preserving the original stance; (2) administer the rephrased inventories to LLMs and prompt them to give free-form responses; (3) present both the responses and the original questions to an evaluator LLM, who rates the degree to which the response leans towards "No" or "Yes" to the original question; (4) calculate value orientations by averaging the scores for items related to each value.

🔑 Usage

An example of evaluating the value orientations of an LLM

python eval_value_orientation.py --test_model gpt-3.5-turbo --questionnaire NFCC2000,LTO

See the available models here and the available questionnaires here.

Citation

If you find ValueBench useful:

@inproceedings{ren-etal-2024-valuebench,
    title = "{V}alue{B}ench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models",
    author = "Ren, Yuanyi  and
      Ye, Haoran  and
      Fang, Hanjun  and
      Zhang, Xin  and
      Song, Guojie",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    year = "2024",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.111",
    doi = "10.18653/v1/2024.acl-long.111",
    pages = "2015--2040",
}

About

[ACL 2024] ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages