-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
384 lines (325 loc) · 17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from moviepy.editor import VideoFileClip
from IPython.display import HTML
import pickle
import sys
__first_frame__ = True
__test_image__ = False
__report_intermediate_result = False
__draw_sliding_window__ = False
left_fit = np.zeros(3)
right_fit = np.zeros(3)
first_N_frames_count = 0
N = 45
left_fitx_memory = [None] * N
right_fitx_memory = [None] * N
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
def pipeline(img, s_thresh=(170, 255), sx_thresh=(20, 100)):
img = np.copy(img)
# Convert to HLS color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float)
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
# Sobel x
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal
scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# Stack each channel
# Note color_binary[:, :, 0] is all 0s, effectively an all black image. It might
# be beneficial to replace this channel with something else.
''' Converting the result to unit8 displays the image correctly '''
color_binary = np.uint8(np.dstack((np.zeros_like(sxbinary), sxbinary, s_binary)) * 255)
combined_binary = np.zeros_like(sxbinary)
combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1
return color_binary, combined_binary
def region_of_interest(img, vertices):
"""
Applies an image mask.
Only keeps the region of the image defined by the polygon
formed from `vertices`. The rest of the image is set to black.
"""
# defining a blank mask to start with
mask = np.zeros_like(img)
# defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
# filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, ignore_mask_color)
# returning the image only where mask pixels are nonzero
masked_image = cv2.bitwise_and(img, mask)
return masked_image
# Image undistortion, gradient thresholing (call pipeline) and perspective transform
def corners_unwarp(img, mtx, dist):
# Use the OpenCV undistort() function to remove distortion
undist = cv2.undistort(img, mtx, dist, None, mtx)
# gradient threshold, input rgb output binary
color_binary, combined_binary = pipeline(undist)
# mask the binary gradient output
mask_region = np.array([[(100, 720),(600, 400), (700, 400), (1200, 720)]], dtype=np.int32)
masked_gradient = region_of_interest(combined_binary, mask_region)
img_size = (masked_gradient.shape[1], masked_gradient.shape[0])
print(img_size)
# define source and destination points
# src = np.float32([[626, 430], [658, 430], [1101, 720], [232, 720]])
# dst = np.float32([[232, 0], [1101, 0], [232, 720], [1101, 720]])
src = np.float32([[(200, 720), (570, 470), (720, 470), (1130, 720)]])
dst = np.float32([[(350, 720), (350, 0), (980, 0), (980, 720)]])
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(masked_gradient, M, img_size)
return undist, warped, M
def read_discortion_coefficient():
dist_pickle = pickle.load(open("camera_cal/dist_pickle.p", "rb"))
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
return mtx, dist
def process_image(image):
global left_fit
global right_fit
global __first_frame__
global mtx
global dist
global left_fitx_memory
global right_fitx_memory
global first_N_frames_count
global N
global ym_per_pix
global xm_per_pix
font = cv2.FONT_HERSHEY_SIMPLEX
curvature_position = (10, 660)
offset_position = (10, 700)
fontScale = 1
fontColor = (0, 255, 0)
lineType = 2
undist, warpped, perspective_matrix = corners_unwarp(image, mtx, dist)
# Converting color space for display
undist = cv2.cvtColor(undist, cv2.COLOR_RGB2BGR)
''' Detecting Lane Lines with Sliding Windows '''
binary_warped = warpped
if __first_frame__:
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):,:], axis=0)
''' histogram is (1280,) '''
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
''' histogram[:midpoint] is (640,) '''
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
''' histogram[:midpoint] is (640,), index in the local right part add midpoint is actual index '''
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
# all positions of possible lane from gradient filter
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# peak x position, current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin from peak x position
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
if __draw_sliding_window__:
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high), (0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high), (0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
''' ? '''
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Curverture calculation
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
y_eval = np.max(ploty)
left_fit_cr = np.polyfit(lefty * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(righty * ym_per_pix, rightx * xm_per_pix, 2)
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * right_fit_cr[0])
average_curvature = (left_curverad + right_curverad)/2
''' Visualizing '''
# Generate x and y values for plotting
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Computing the middle point of lanes
left_lane_buttom_x = left_fit[0]*719**2 + left_fit[1]*719 + left_fit[2]
right_lane_buttom_x = right_fit[0]*719**2 + right_fit[1]*719 + right_fit[2]
mid_lane_x = (left_lane_buttom_x + right_lane_buttom_x)/2
vehicle_offset_x = abs(mid_lane_x - 640) # in pixels
vehicle_offset_x_meters = vehicle_offset_x * xm_per_pix
# Caching left_fitx and right_fitx
left_fitx_memory[0] = left_fitx
right_fitx_memory[0] = right_fitx
first_N_frames_count += 1
# highlight gradient output "maybe lane"
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
if __report_intermediate_result:
plt.figure()
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.imsave('lane_detection.jpg', out_img)
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.show()
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, np.linalg.inv(perspective_matrix), (image.shape[1], image.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
# Curverture
cv2.putText(result, "Curvature: " + str(float("{0:.2f}".format(average_curvature))) + "m", curvature_position, font, fontScale, fontColor, lineType)
cv2.putText(result, "Offset: " + str(float("{0:.2f}".format(vehicle_offset_x_meters))) + "m", offset_position, font, fontScale, fontColor, lineType)
# plt.imshow(result)
# plt.show()
__first_frame__ = False
return result
else:
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's now much easier to find line pixels!
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Curverture calculation
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
y_eval = np.max(ploty)
left_fit_cr = np.polyfit(lefty * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(righty * ym_per_pix, rightx * xm_per_pix, 2)
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(2 * right_fit_cr[0])
average_curvature = (left_curverad + right_curverad)/2
# Generate x and y values for plotting
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
# Computing the middle point of lanes
left_lane_buttom_x = left_fit[0] * 719 ** 2 + left_fit[1] * 719 + left_fit[2]
right_lane_buttom_x = right_fit[0] * 719 ** 2 + right_fit[1] * 719 + right_fit[2]
mid_lane_x = (left_lane_buttom_x + right_lane_buttom_x) / 2
vehicle_offset_x = abs(mid_lane_x - 640) # in pixels
vehicle_offset_x_meters = vehicle_offset_x * xm_per_pix
# Caching left_fitx and right_fitx
if first_N_frames_count < N:
# print("Stacking")
left_fitx_memory[first_N_frames_count] = left_fitx
right_fitx_memory[first_N_frames_count] = right_fitx
first_N_frames_count += 1
else:
# print("Stabilizing")
left_fitx_memory.pop(0)
right_fitx_memory.pop(0)
left_fitx_memory.append(left_fitx)
right_fitx_memory.append(right_fitx)
# Retrieve the average coordinates from the previous N frames
sum_left_fitx = np.zeros(720)
sum_right_fitx = np.zeros(720)
for left in left_fitx_memory:
sum_left_fitx += left
for right in right_fitx_memory:
sum_right_fitx += right
# print(sum_left_fitx)
left_fitx = sum_left_fitx/N
right_fitx = sum_right_fitx/N
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, np.linalg.inv(perspective_matrix), (image.shape[1], image.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
cv2.putText(result, "Curvature: " + str(float("{0:.2f}".format(average_curvature))) + "m", curvature_position, font, fontScale, fontColor, lineType)
cv2.putText(result, "Offset: " + str(float("{0:.2f}".format(vehicle_offset_x_meters))) + "m", offset_position, font, fontScale, fontColor, lineType)
# plt.imshow(result)
# plt.show()
return cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
if __test_image__:
mtx, dist = read_discortion_coefficient()
img = cv2.imread('test_images/hard.jpg')
processed_image = process_image(img)
plt.imshow(processed_image)
plt.show()
plt.imsave('final.jpg', processed_image)
else:
mtx, dist = read_discortion_coefficient()
white_output = 'test_videos_output/project_video.mp4'
# clip1 = VideoFileClip("project_video.mp4").subclip(0, 10)
clip1 = VideoFileClip("project_video.mp4")
white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!
white_clip.write_videofile(white_output, audio=False)