This repository include code and documentation for our manuscript "Improving Gene Regulatory Network Inference using Dropout Augmentation".
This package is available on pip
pip install grn-dazzle
The core function runDAZZLE
requires the following two things to get started:
- Single cell gene expression table. We suggest you use log transformation to normalize the data
- Experiment Configs. We also provide two sets of default configs with this package, namely
DEFAULT_DAZZLE_CONFIGS
andDEFAULT_DEEPSEM_CONFIGS
. They are just two python dictionaries. If you need to make modifications, just save them to a variable and adjust the values.
from dazzle import load_beeline, runDAZZLE, get_metrics, DEFAULT_DAZZLE_CONFIGS
bl_data, bl_ground_truth = load_beeline(
data_dir='data',
benchmark_data="hESC",
benchmark_setting="500_STRING"
)
model, adjs = runDAZZLE(bl_data.X, DEFAULT_DAZZLE_CONFIGS)
get_metrics(model.get_adj(), bl_ground_truth)