This framework generates Graph Visual Rhythm (GVR) for vehicular networks, considering temporal graphs.
Before the execution, you need to check these following dependencies: SUMO 1.2, python, python3, networkx, and matplotlib 2.1.0, seaborn.
TAPASCologne is used, but you can use other traces. You can download it in this link http://kolntrace.project.citi-lab.fr/
python runner.py <cologne6to8>.sumocfg <tripinfo>.xml
python graph.py
- Degree centrality
- Closeness centrality
- Betweenness centrality
- Local efficiency
- Harmonic centrality
- PageRank
python3 interface.py
@misc{git-gvr,
title = {Graph Visual Rhythm for Vehicular Networks},
author = {Trindade, Silvana},
howpublished = {\url{https://github.com/Trindad/graph-visual-rhythm}},
month = {June},
year = {2019}
}